

MSLC-2XT Master Synchronizer and Load Control

Manual Software Version 1.10

Document ID: 37947, Revision B

Manual 37947

WARNING

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage and (ii) invalidate product certifications or listings.

CAUTION

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a
 grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

OUT-OF-DATE PUBLICATION

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website.

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:

http://wwdmanuals.com/DSLC MSLC

If your publication is not there, please contact your customer service representative to get the latest copy.

Important definitions

WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.

NOTE

Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward All Rights Reserved.

Page 2/253 © Woodward

Revision History

Pov	Date	Editor	Changes
B	2024-01-29	Editor	
Ь	2024-01-29		Technical Manual
			Restructured Appendix
			Reworked title page
			Updated contact email addresses
			- Opuated contact cinan addresses
Α	2022-10-30		First release of MSLC-2-XT.
			MSLC-2-XT is the successor of the MSLC-2.
			Here is a rough list of the differences to the former MSLC-2 device:
			Hardware
			 Housing The dimensions of the control remain the same.
			The silk screen of the housing is adapted according to the new hardware platform
			The labels are adapted according to the newest rules
			Terminals
			The phoenix plugs remain mainly the same with some slightly changes:
			The 100V AC measurement is connected on the 400V connection (the 100V AC connection
			does not exist anymore)
			 The analog outputs 1 & 2 are supported with two terminals now (the shunt for voltage output is internally populated)
			The communication 9-pin D-sub connectors are replaced by phoenix plugs with screw ter-
			minals
			I/O Features
			The AC voltage measurement capability is expanded to 690 Vrated
			PT inputs: 100V / 480V / 690V is handled by device configuration
			 CT inputs: 1A and 5A secondary are provided by one P/N CT inputs: The linear measurement range is increased to 3 x Irated. (The MSLC-2 is 1.5 x
			Irated)
			Discrete Inputs: The minimum delay time of DIs on board are now 20ms (The MSLC-2 is 80ms)
			The connection of a 3-phase busbar measurement is performed differently in comparison to MSLC-2. (See wiring diagram)
			to Mate 2. (acc willing diagram)
			Communication Interfaces
			 The RS232 is removed and exchanged by USB (slave) connection 1 additional Ethernet connection (named C) is provided
			Communicating with legacy MSLC-2 (and DSLC-2)
			Woodward provides update files for legacy MSLC-2 (SW: 5418-7870-A) and DSLC-2 (SW: 5418-7869-A) devices in the field if there is a need to run a mixture of both MSLC-2 / DSLC-2 generations. The legacy
			device will then send their UDP message in a way the DSLC-2XT / MSLC-2XT can evaluate. If this update
			file is not loaded the system won't run.
			Functionality
			General
			The functionality is the same as the last published MSLC-2 (version 1.1511). Basically, the new genera-
			tion is equipped with a more powerful CPU, memory, and communication. The device is more respon-
			sive in HMI and SCADA communication purposes. The important control functions are running on same task rates which ensures the same control and logic dynamic. The device is designed so that it behaves
			as good as possible like the original DSLC-2.
			Accepting wset configuration files from legacy MSLC-2 (and DSLC-2)
			Woodward provides a converting rule for ToolKit to make the configuration transfer as smooth as pos-
			sible. Some minor parameters will be shown as to consider during this first process.

© Woodward Page 3/253

Rev.	Date	Editor	Changes
			The AC measurement of the MSLC-2XT (and DSLC-2XT) The measurement hardware and software is different in comparison to the legacy devices. But this is mainly the higher accuracy, the more flexible measurement range and the response characteristic. The earthing of the MSLC-2XT / DSLC-2XT devices becomes more important because of the higher impedance of the measurement circuits.
			ToolKit The ToolKit layout (wtool file) is in the same way designed like the original one of the legacy devices. There are only some less parameters to consider which have to do with the new AC measurement and communication purposes.

Page 4/253 © Woodward

Content

CHAPTER 1. GENERAL INFORMATION	13
Document Overview	13
QR Code	13
Application	14
MSLC-2 function summary	14
Synchronizer	15
Load Control	
Process Control	
Var/PF Control	
DSLC-2 / MSLC-2 Systems	
Control Relationships in a MSLC-DSLC System	
CHAPTER 2. INSTALLATION	20
Electrostatic Discharge Awareness	
Unpacking	
Location	
Housing	
Dimensions	
Installation	
Terminal Arrangement	
LEDs	
Wiring Diagrams	
Connections	
Power Supply	
Voltage Measuring	
Current Measuring	
Power Factor Definition	
Discrete Inputs	
Relay Outputs	
Analog Inputs	
Interfaces	
CHAPTER 3. CONFIGURATION & OPERATION	<u>54</u>
Configuration via PC	
Install ToolKit Configuration and Visualization Software	
Install ToolKit Software	
Install ToolKit Configuration Files	55
Starting ToolKit Software	56
Configure ToolKit Software	57
Connecting ToolKit and the MSLC-2 Unit	58
View MSLC-2XT Data with ToolKit	61
Configuring the MSLC-2XT with ToolKit	62
The MSLC-2XT Version Page	63
Menu (Setpoint) Description	64
MSLC-2XT – Homepage	
Menu 1 – Synchronizer	
Menu 2 – Load Control	
Menu 3 – Process Control	
Menu 4 – Voltage/Var/PF Control	
Menu 5 – Configuration	
Segment Connections	
Menu 6 – Analog Inputs	
Menu 7, 7.1 and 7.2 – Electrical Parameters	
Menu 7.1 – System A	
Menu 7.2 – System B.	

Released

Manual 37947	MSLC-2XT - Master Synchronizer and Load Control
Menu 8 – Control Status Monitor	128
Menu 9 – Discrete Inputs / Discrete (Relay) Outputs	
Menu 0 – Diagnostics	
Overview Pages	
Prestart Setup Procedure	141
Configuration Menu	141
Prestart Segmenting Setup	142
Prestart Synchronizer Setup	
Prestart Load Control Setup	
Prestart Process Control Setup	
Prestart Var/Power Factor Control Setup	
MSLC-2 Control Adjustments	
Calibration Check	
Synchronizer Adjustments	
Preliminary Synchronizer Adjustments	
Phase Matching Synchronizer	
Slip Frequency Synchronizer	
Final Synchronizer Setup	
Voltage Matching Adjustments	
Preliminary Voltage Matching Setup	
Final Voltage Matching Setup Load Control Adjustment	
Base Load Mode Setup	
Remote Base Load	
Import/Export Mode Setup	
Remote Import/Export Setup	
Final Load Control Setup	
Process Control Adjustment	
Var/PF Control Adjustment	
Constant Generator Power Factor Setup	
PF Control at the Utility - Setup	
Remote PF Control at the Utility - Setup	
Var Control at the Utility - Setup	
CHAPTER 4. SYNCHRONIZER DESCRIPTION	150
Introduction	150
Functional Description	
Operating Modes	
Measurement Connections (Examples)	161
Dead Bus Closure – Multiple Units	
Deadbus Closure Mismatch Alarm	
Voltage Matching	
Phase Matching Synchronizing	
Slip Frequency Synchronizing	
Permissive Mode / Synch-Check Function	
GCB Maximum Closing Attempts	
Auto re-synchronization	
Reclose limit alarm	
Synchronizer Timer	
Logic Charter GCB Closure	
Ramping	
Manual Synchronizing	
Frequency Setpoint	
Voltage Setpoint	
Breakt Fraguency / Voltage Satisfate Book To Bate	
Reset Frequency / Voltage Setpoints Back To Rated	1 (30 HZ 01 60 HZ)181
CHAPTER 5. REAL POWER CONTROL DESCRIPTION	<u></u> 182
Introduction	
MSLC-2 / DSLC-2 Interface	

Released

<u>Manual 37947</u>	MSLC-2XT - Master Synchronizer and Load Control
Base Load Mode	182
Import / Export Mode	
Process Control Mode	
Remote Control	
Automatic Power Transfer Control Functions	
	183
	183
	184
Cuanton C. Van Bourto Froton Courton Deco	DIDTION 405
CHAPTER 6. VAR/POWER FACTOR CONTROL DESC	<u> </u>
Constant Generator Power Factor	
Power Factor Control	
Var Control	
CHAPTER 7. PROCESS CONTROL DESCRIPTION	
Introduction	
Description	187
CHAPTER 8. NETWORK / SYSTEM DESCRIPTION	190
Introduction	190
Description	
	191
	192
Remote Control by PLC	
	Protocol197
	CP Stack198
•	
CHAPTER 9. INTERFACE	
Interface Overview	
	200
	System
Ethernet Load Sharing	
	203
Modbus Communications	
Changing Parameter Settings via RS485	
Modbus Parameters	
	218
, ,	
CHAPTER 10. APPLICATION	219
Phase Angle Compensation	219
APPENDIX A TECHNICAL SPECIFICATIONS	220
Technical Data	
Environmental Data	
Accuracy	
•	
APPENDIX B USEFUL INFORMATION	
Connecting 24 V Relays	227
APPENDIX C DATA PROTOCOLS	228
Data Protocol 5200	228

APPENDIX D PARAMETER OVERVIEW	238
Introduction	
Parameter List Columns	
Parameter List	
APPENDIX E SERVICE OPTIONS	249
Product Service Options	
Returning Equipment for Repair	249
Packing a Control	
Return Authorization Number RAN	250
Replacement Parts	
How to Contact Woodward	
Engineering Services	
Technical Assistance	

Figures and Tables

Figures

Figure 1-2: MSLC-2 Load Control Overview	16
Figure 1-3: Multiple generators in isolated operation with tie-breaker	18
Figure 1-4: Multiple generators in isolated and utility parallel operation with utility- and tie-breaker	
Figure 1-5: Control relationship in a MSLC-DSLC system	19
Figure 2-1: Housing MSLC-2 - dimensions	
Figure 2-2: Housing - drill plan	23
Figure 2-4: Wiring diagram - MSLC-2 - 1/2	25
Figure 2-5: Wiring diagram - MSLC-2 - 2/2	26
Figure 2-6: Power supply	28
Figure 2-7: Power supply - crank waveform at maximum load	29
Figure 2-8: Voltage measuring – system A	30
Figure 2-9: Voltage measuring – system A windings, 3Ph 4W OD	31
Figure 2-10: Voltage measuring – system A measuring inputs, 3Ph 4W OD	31
Figure 2-11: Voltage measuring – system A windings, 3Ph 4W	32
Figure 2-12: Voltage measuring – system A measuring inputs, 3Ph 4W	32
Figure 2-13: Voltage measuring – system A windings, 3Ph 3W	33
Figure 2-14: Voltage measuring – system A measuring inputs, 3Ph 3W	33
Figure 2-15: Voltage measuring – system B	
Figure 2-16: Voltage measuring – system B measuring inputs, 1Ph 2W (phase-neutral)	35
Figure 2-17: Voltage measuring – system B measuring inputs, 1Ph 2W (phase-phase)	35
Figure 2-18: Voltage measuring – auxiliary system B	37
Figure 2-19: Voltage measuring - auxiliary system B PT windings, 3Ph 4W	
Figure 2-20: Voltage measuring - auxiliary system B measuring inputs, 3Ph 4W	38
Figure 2-21: Voltage measuring - auxiliary system B PT windings, 3Ph 3W	39
Figure 2-22: Voltage measuring - auxiliary system B measuring inputs, 3Ph 3W	
Figure 2-23: Current measuring – system A	
Figure 2-24: Current measuring – system A, L1 L2 L3	41
Figure 2-25: Current measuring - system A, phase Lx	
Figure 2-26: Power measuring - direction of power	
Figure 2-27: Phasor diagram – inductive / capacitive	
Figure 2-28: Discrete inputs - alarm/control input - positive signal	
Figure 2-29: Discrete inputs - alarm/control input - negative signal	
Figure 2-30: Relay outputs	
Figure 2-31: Analog inputs - wiring two-pole senders using a voltage signal	
Figure 2-32: Analog inputs - wiring two-pole senders (external jumper used for current signal)	49
Figure 2-33: screwable 6-terminal connector RS-485	50
Figure 2-34: RS-485 Modbus - connection for half-duplex operation (120 Ohms termination resistor at bot	
Figure 2-35: RS-485 Modbus - connection for full-duplex operation.	
Figure 2-36-1: Shielding preparation (internal RC element)	
Figure 2-37: RJ-45 connector - Ethernet	
Figure 3-1: ToolKit - visualization screen	61

MSLC-2XT - Master Synchronizer and Load Control

Figure 3-2: ToolKit - analog value trending screen	6
Figure 3-3: ToolKit - configuration screen	
Figure 3-4: ToolKit -version page	6
Figure 3-5: ToolKit - home page (MSLC-2 configured as utility breaker control)	
Figure 3-6: ToolKit - home page (MSLC-2 configured as tie-breaker control)	
Figure 3-7: ToolKit - home page - MSLC-2 configured as utility breaker control	6
Figure 3-8: ToolKit - home page - MSLC-2 configured as tie-breaker control	
Figure 3-9: ToolKit - home page - segments	
Figure 3-10: ToolKit – synchronizer	
Figure 3-11: ToolKit – load control	
Figure 3-12: ToolKit – process control	
Figure 3-13: ToolKit – voltage/var/pf control	82
Figure 3-14: ToolKit – configuration	
Figure 3-15: ToolKit – interfaces	96
Figure 3-16: ToolKit – system management	
Figure 3-17: Access to the device – Overview	
Figure 3-18: Password entry: ToolKit	.102
Figure 3-19: ToolKit – configure counters	
Figure 3-20: ToolKit – analog inputs	
Figure 3-21: ToolKit – relevant fields for remote load reference input	
Figure 3-22: ToolKit – relevant fields for remote process reference input	
Figure 3-23: ToolKit – process signal input	
Figure 3-24: ToolKit – reactive load input	
Figure 3-25: ToolKit – electrical parameters	
Figure 3-27: ToolKit – electrical parameters System B	
Figure 3-28: ToolKit – control status monitor	
Figure 3-30: ToolKit – diagnostics	
Figure 3-31: ToolKit – diagnostics	
Figure 3-32: ToolKit – MSLC-2 overview page	
Figure 3-33: Example of an online diagram – step 1	
Figure 3-34: Example of an online diagram with segment numbers and segment connector feedbacks	1/1
Figure 3-35: Example of an online diagram with according network	1//
Figure 3-36: Example of an online diagram with all required information to setup the units	1/1
Figure 3-37: Power measurement	1/1
Figure 4-1: Synchronizer block diagram	
Figure 4-2: Low voltage system 480 V / 277 V – 3-phase with neutral	16
Figure 4-3: Low voltage system 480 V / 277 V = 3-phase with neutral	
Figure 4-4: Low voltage system 480 V – 3-phase with neutral	16:
Figure 4-5: Low voltage system 600 V / 346 V – 3-phase	
Figure 4-6: Low voltage system 600 V / 346 V – 3-phase	16!
Figure 4-7: Low voltage system 600 V / 346 V – 3-phase	.166
Figure 4-8: Low voltage system 600 V / 346 V – 3-phase with neutral	
Figure 4-9: Low voltage system 600 V / 346 V – 3-phase with neutral	
Figure 4-10: Low voltage system 600 V / 346 V – 3-phase with neutral	
Figure 4-11: Low voltage system 600 V / 346 V – 3-phase with neutral	
Figure 4-12: Middle voltage system 20 kV – 3-phase without neutral	
Figure 4-13: Middle voltage system 20 kV – 3-phase without neutral	
Figure 4-14: Dead bus closing – Example of dead busbar closure arbitration	.173
Figure 4-15: Logic charter CB closure	.17
Figure 7-1: Diagram process control	
Figure 8-1: Multiple generators in isolated operation without tie-breakers	
Figure 8-2: Multiple generators in isolated / parallel to utility operation without tie-breakers	
Figure 8-3: Isolated operation with multiple generator and tie-breaker	
Figure 8-4: Isolated / utility parallel operation with multiple generator and tie-breaker	
Figure 8-5: Isolated / utility parallel operation with multiple generator, tie-breaker and generator group breaker	.193
Figure 8-6: Isolated operation with multiple generator and tie-breaker (ring option)	.194
Figure 8-7: Not supported application	
Figure 8-8: Not supported application	
Figure 8-9: Visualization and remote control by PLC via RS-485 interface	
Figure 9-1: MSLC-2 - interface overview (housing - side view)	
Figure 9-2: Modbus - visualization configurations	
Figure 9-3: Modbus - sending binary digital orders over interface	
Figure 9-4: Modbus – loss of connection	
Figure 9-5: Modbus - configuration example 1 - active power	.212

Released

Manual 37947	MSLC-2XT - Master Synchronizer and Load Control
Figure 9-6: Modbus - configuration example 2 – power factor	213
Figure 9-7: Modbus - configuration example 2	
Figure 9-8: Modbus - configuration example 3	
Figure 9-9: Modbus - remote control parameter 1701	
Figure 9-10: Modbus - write register - enable the resetting proced	dure via USB or Modbus TCP/IP216
Figure 9-11: Modbus - remote control parameter 1701	
Figure 9-12: Modbus - write register - resetting the default values	
Fig. 201: Phase angle compensation MCB	
Figure 0-1: Interference suppressing circuit - connection	227
Tables	
Table 1-1: Manual - overview	13
Table 2-1: Conversion chart - wire size	
Table 2-2: Power supply - terminal assignment	28
Table 2-3: Voltage measuring – terminal assignment – System A	
Table 2-4: Voltage measuring - terminal assignment - System A,	
Table 2-5: Voltage measuring – terminal assignment – system A,	
Table 2-6: Voltage measuring - terminal assignment – system A,	
Table 2-7: Voltage measuring - terminal assignment – system B	
Table 2-8: Voltage measuring - terminal assignment – system B,	
Table 2-9: Voltage measuring - terminal assignment – system B,	
Table 2-10: Voltage measuring - terminal assignment - auxiliary s	
Table 2-11: Voltage measuring - terminal assignment - auxiliary s Table 2-12: Voltage measuring - terminal assignment - auxiliary s	
Table 2-12: Voltage measuring - terminal assignment - auxiliary s	
Table 2-14: Current measuring - terminal assignment – system A	
Table 2-15: Current measuring - terminal assignment - system A	
Table 2-16: Power Measuring – sign displayed – Utility / Tie	
Table 2-17: Power measuring - terminal assignment	
Table 2-18: Discrete input - terminal assignment 1/2	
Table 2-19: Discrete input - terminal assignment 2/2	
Table 2-21: Relay outputs - terminal assignment	47
Table 2-22: Relay outputs driven by	
Table 2-23: Analog inputs - terminal assignment - wiring two-pole	
Table 2-24: RS-485 interface #1 - pin assignment	
Table 2-26: RJ-45 interfaces - pin assignment	
Table 3-1: Parameter – homepage - General	
Table 3-2: Parameter – homepage - Setpoints	
Table 3-3: Parameter – homepage – Process control Table 3-4: Parameter – synchronizer – PID frequency control	
Table 3-5: Parameter – synchronizer – PID frequency control	
Table 3-6: Parameter – synchronizer – synchronizer control	
Table 3-7: Parameter – load control – PID import/export control	
Table 3-8: Parameter – load control – power control monitoring	
Table 3-8: Parameter – load control – power control monitoring	
Table 3-8: Parameter – load control – power control monitoring	
Table 3-8: Parameter – load control – power control monitoring	
Table 3-9: Parameter – load control – power control	78
Table 3-10: Parameter – load control – import/export level via inte	
Table 3-11: Parameter – process control – PID process control	
Table 3-12: Parameter – process control – process control	
Table 3-13: Parameter – process control – process signal input n	
Table 3-14: Parameter – voltage/var/pf control – voltage control .	
Table 3-15: Parameter – voltage/var/pf control – voltage monitori	
Table 3-16: Parameter – voltage/var/pf control – PID VAR control	483
Table 3-17: Parameter – voltage/var/pf control – VAR control	
Table 3-18: Parameter – configuration	
Table 3-20: Parameter – configuration – transformer	
Table 3-21: Parameter – configuration – system settings	Q1
Table 3-22: Parameter – configuration – tie breaker	
Table 3-23: Parameter – configuration – communication	
Table 3-24: Parameter – interfaces – serial 2 – RS485	
Table 3-25: Parameter – interfaces – serial 2 – Modbus	
Table 3-26: Parameter – interfaces – network A	

Released

Manual 37947	MSLC-2XT - Master Synchronizer and Load Control
Table 0-1: Interference suppressing circuit for relays	227
Table 0-1: Data Protocol 5200	
(Sequence following ID number)	239
Table 0-1: Parameter list	248

Type

English

Chapter 1. General Information

Document Overview

This manual describes the Woodward MSLC-2-XT[™] Master Synchronizer and Load Control. If there is no difference to MSLC-2, MSLC-2 and MSLC-2-XT are used synonymously in this document.

- 7			
	MSLC-2		
DSLC-2 – User Manual		37948	-
MSLC-2 – User Manual	this manual ⇒	37947	_

Table 1-1: Manual - overview

Intended use:The unit must only be operated in the manner described by this manual. The prerequisite for a proper and safe operation of the product is correct transportation, storage and installation as well as careful operation and maintenance.

QR Code

To get access to the complete product documentation, scan this QR code or use the following link: http://wwdmanuals.com/DSLC MSLC

NOTE

This manual has been developed for a unit fitted with all available options. Inputs/outputs, functions, configuration screens and other details described, which do not exist on your unit, may be ignored.

The present manual has been prepared to enable the installation and commissioning of the unit. Due to the large variety of parameter settings, it is not possible to cover every combination. The manual is therefore only a guide.

© Woodward Page 13/253

Application

The Woodward MSLC-2XT™ control is the direct successor of the former MSLC™ master synchronizer and load control. The MSLC-2XT™ is a microprocessor-based overall plant load control designed for use in a system with Woodward DSLC-2XT™, DSLC-2™ ("Digital Synchronizer and Load Control") controls on each generator to provide utility synchronizing, paralleling, loading and unloading of a three-phase generating system.

Applications allow up to 32 generators to be paralleled and controlled in conjunction with up to 16 MSLC-2XT™, MSLC-2™. A dedicated Ethernet system provides seamless communications between DSLC-2™ and MSLC-2™ units. A second Ethernet port is provided for customer remote control and monitoring capability using Modbus TCP allowing DCS and PLC interfacing. Both together can be used as a redundant Ethernet system. Modbus TCP is also available through additional Ethernet connection (named C). Modbus RTU is available through a separate RS-485 port.

MSLC-2 function summary

Original MSLC functions include:

- Selectable for phase matching or slip frequency synchronizing between the utility and a local bus with voltage matching
- · Automatic system loading and unloading for bumpless load transfer
- Import/export level control capability
- Process control for cogeneration, pressure, maintenance or other process
- Proportional loading of associated DSLC-2 controls in isochronous load sharing
- Adjustable power factor control
- Built in diagnostics with relay output
- Multifunction adjustable high and low limit alarms and adjustable load switches with relay outputs
- Digital communications network to provide loading and power factor control of individual DSLC-2 equipped generators

Additional MSLC-2 functions include:

- Automatic dead bus closure capability for tie-breakers
- Multiple utility breaker and tie-breaker MSLC-2s on the same bus segment
- One dedicated Ethernet line for precise system communications between all DSLC-2s and MSLC-2s on the system
- Ethernet Modbus/TCP for remote control and monitoring
- Serial Modbus RS-485 for remote control and monitoring
- Applications with up to 32 DSLC-2 and 16 MSLC-2
- Automatic segment control (self-recognizing of the segment)
- Full setup, metering and diagnostic capability through the PC program ToolKit

Page 14/253 © Woodward

Synchronizer

Either phase matching or slip frequency synchronizing may be selected. Phase matching provides rapid synchronizing for critical standby power applications. Slip frequency synchronizing ensures that the initial flow of power will be either out of the local system (export) or into the local system (import), depending on whether a positive or negative slip is chosen. For both synchronizing methods, the MSLC-2 uses actual slip frequency and breaker delay values to anticipate an adjustable minimum phase difference between the utility and the local bus. Additional synchronizer functions include voltage matching, time delayed automatic multi-shot reclosing, auto-resynchronizing and a synchronizer timeout alarm. Each of these features may be enabled or disabled during setup.

The MSLC-2 control provides a safe automatic dead bus closure function. Deadbus closing permission is granted to only one DSLC-2 or MSLC-2 control in the whole system through locking techniques done over the communications network.

The MSLC-2, configured as tie-breaker control, allows selecting different closure modes or all modes:

- Alive bus A -> dead bus B
- Dead bus A -> dead bus B
- Alive bus B -> dead bus A

Load Control

The MSLC-2 has four load control modes available:

- Base load
- Import/export
- Process
- Utility unload

Load control begins with the breaker closure of the utility and another discrete input selecting the load control mode wanted. If no load control mode is selected the MSLC-2 will be in the offline mode. The system load immediately prior to breaker closure is used as the starting base load reference. On command, the adjustable ramp allows smooth, time controlled loading into a set import/export level. A ramp pause switch is provided to stop the ramp at any point.

The import/export control is an integrating control. It adjusts the percentage of rated load carried by the individual generators, operating in isochronous load sharing, in order to maintain a set import/export or base load level. The MSLC-2 will maintain a constant base load or import/export level even with changing utility frequencies. The MSLC-2 provides switch inputs to allow raising or lowering the internal digital base load or import/export reference. The control also provides a remote analog signal input for reference setting, if desired. (Signal variety: 0 to 20 mA, 4 to 20 mA, 0 to 5 V, 1 to 5 V and 0 to 10 V)

The MSLC-2 is equipped with a utility unload switch, which provides an adjustable time controlled ramp to lower the base load or import/export level. When the level is below an adjustable threshold, the MSLC-2 issues a breaker open command to separate the utility from the local bus. The ramp pause switch can be used to stop the utility unload at any point. The maximum load that the MSLC-2 can tell the individual generators to carry is their rated loads. So, in the event that the plant load is greater than the capacity of the operating generators, the utility unload will stop when 100% rated load is reached on each of the operating generators. This prevents accidental overloading of the local generators.

The MSLC-2 also includes two adjustable load switches which can be used for external functions or warnings when chosen system load levels are attained. The high and low limit switches may also be activated when 100% or 0% load signal to the generators is reached.

© Woodward Page 15/253

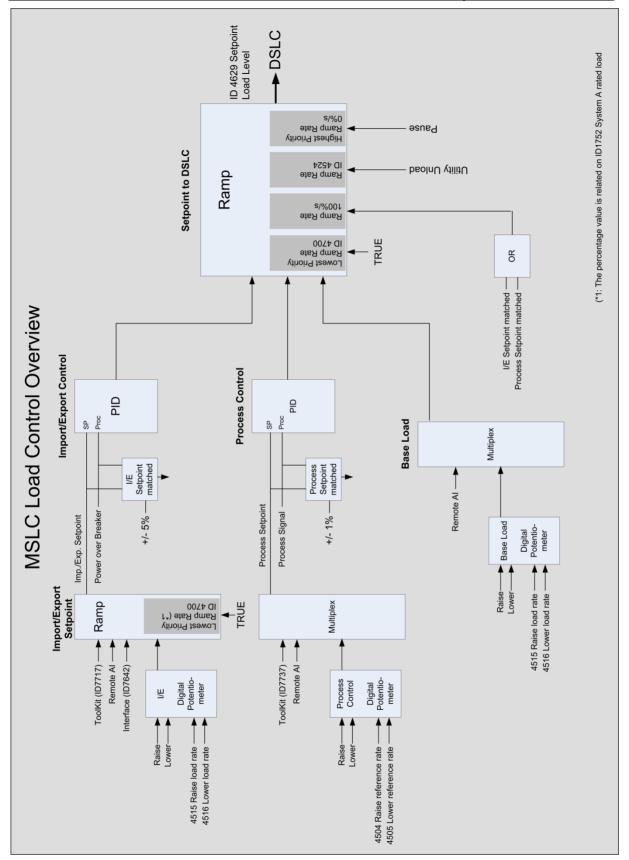


Figure 1-2: MSLC-2 Load Control Overview

Page 16/253 © Woodward

Process Control

A process controller is provided for cogeneration, fluid level maintenance, pressure control or other applications. An adjustable bandwidth signal input filter, flexible PID controller adjustments, selectable for direct or indirect action, allow the process control to be used in a wide variety of applications.

An analog signal input (signal variety: 0 to 20mA, 4 to 20mA, 0 to 5V, 1 to 5V and 0 to 10V) provides the process signal to the MSLC-2. The MSLC-2 includes an internal digital process reference, which may be controlled by the raise and lower switch contact inputs or by an external analog input signal as remote process reference. The MSLC-2 also has a Modbus address for process reference control. The output of the process control, like the import/export control, is the percentage of rated load setpoint to the individual generators in isochronous load sharing.

An adjustable ramp allows smooth entry and exit from the process control mode. When the process control mode is selected, the load reference is ramped in a direction to reduce the error between the process input and the process reference. When the error is minimized or the reference first reaches either the high or the low specified limits, the process controllers PID loop is activated. When the load reference output reaches either 100% or 0%, the control will maintain that load reference until process control is established.

The MSLC-2 is not capable of overloading or reverse powering the generators in an attempt to meet the process reference. The high and low limit switches mentioned above can be used to indicate that either too many or too few generators are online to maintain the process within its limits.

Var/PF Control

The var/PF function controls the power factor on all of the DSLC-2 equipped machines operating in isochronous load sharing. The PF control begins on breaker closure. The MSLC-2 has three modes of Var/PF control (which are selected in Menu 4):

- Constant generator power factor sets the power factor reference on all of the DSLC-2 controls to the internal reference chosen in the MSLC-2. The power factor can then be adjusted using the voltage raise and lower inputs. The voltage raise command will make the power factor more lagging. Conversely, the voltage lower command will make the power factor more leading.
- Utility tie power factor control adjusts the power factor reference on all of the DSLC-2 controls in isochronous load sharing in order to maintain the power factor across the utility tie.
- Utility tie var control adjusts the power factor reference on all of the DSLC-2 controls in isochronous load sharing in order to maintain the level of vars being imported or exported from the utility.

The var/PF control mode begins with the load control mode selected. The constant generator power factor and the utility tie power factor control can have the reference setting controlled by an analog input (see Menu 6). By closing the voltage raise and lower discrete inputs, you can select the analog remote input for reference control.

© Woodward Page 17/253

DSLC-2 / MSLC-2 Systems

The network addressing of the DSLC-2 / MSLC-2 allows up to 32 DSLC-2s and 16 MSLC-2s in an application. A DSLC-2 and MSLC-2 application can handle 8 segments. Discrete inputs inform the DSLC-2s and MSLC-2s which segments each generator and utilities are operating on. If a MSLC-2 receives a discrete input to activate segment 1 and 2, it will share this information with all controls over the Ethernet bus. It is not necessary to provide a segment activation discrete input to all controls. Segmenting allows the DSLC-2s and MSLC-2s to remain connected thru the Ethernet bus, but be operating on separate load buses.

The DSLC-2 / MSLC-2 system can be applied according to following rules:

- The maximum number of DSLC-2s (Gen-CB) is 32.
- The maximum number of MSLC-2s (Utility- or Tie-CB) is 16.
- The maximum number of segments is 8.
- The segment numbers have to follow a line, which can finally be closed to a ring.
- For DSLC-2 it can be selected between two segmenting modes:
 - o Bus segmenting determining generators running together via an algorithm.
 - o Device segmenting determining generators running together from outside.
- Only one MSLC-2 can be used as master control, when multiple MSLC-2 is resided in one segment.
 - The MSLC-2 with the lower device number will control if multiple Utility MSLC-2s are active on the same segment
- The generator is not counted as a segment.
- The utility is not counted as a segment.

NOTE

If different MSLC-2s, located in different segments, are connected via a tie-MSLC-2, more than one MSLC-2 is now located in the same segment. The result is the MSLC-2 with the lowest device number becomes the master of all MSLC-2s located in this segment.

Examples (DSLC-2 with Bus Segmenting):

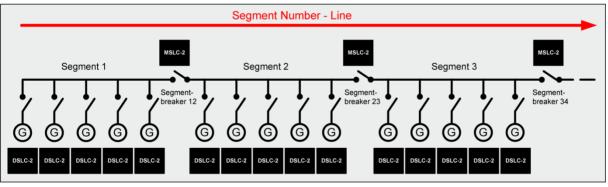


Figure 1-3: Multiple generators in isolated operation with tie-breaker

Page 18/253 © Woodward

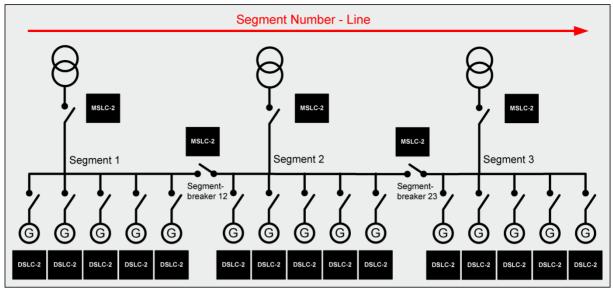


Figure 1-4: Multiple generators in isolated and utility parallel operation with utility- and tie-breaker

Control Relationships in a MSLC-DSLC System

A MSLC / DSLC system is defined through minimum of one MSLC device and one DSLC device. A DSLC is only controlled by a MSLC, if:

- The MSLC resides in the same segment
- The MSLC has got a master function, like:
 - DI Sync Run
 - o DI Sync Check
 - DI Manual (DI Sync Check AND DI Sync Permissive)
 - DI Base Load Control
 - DI Import/Export Control
 - o DI Process Control
 - DI Utility Unload
- The according DSLC is listening on the master MSLC, which means:
 - DI Base Load is not active
 - DI Process Control is not active
 - DI Load/Unload is active

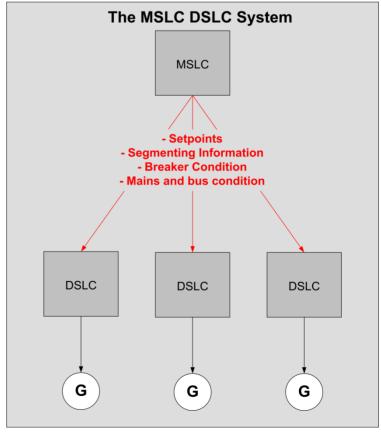


Figure 1-5: Control relationship in a MSLC-DSLC system

© Woodward Page 19/253

Chapter 2. Installation

Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- 2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as easily as synthetics.
- 3. Keep plastic, vinyl and Styrofoam materials (such as plastic or Styrofoam cups, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, etc.) away from the control, modules and work area as much as possible.
- 4. Opening the control cover may void the unit warranty.

Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:

- Ensure that the device is completely voltage-free (all connectors have to be disconnected).
- Do not touch any part of the PCB except the edges.
- Do not touch the electrical conductors, connectors, or components with conductive devices or with bare hands.
- When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards and Modules.*

Page 20/253 © Woodward

Unpacking

Before unpacking the control, refer to the inside front cover of this manual for WARNINGS and CAUTIONS. Be careful when unpacking the control. Check for signs of damage such as bent or dented panels, scratches, lose or broken parts. If any damage is found, immediately notify the shipper.

Location

When selecting a location for mounting the MSLC-2 control, consider the following:

- Protect the unit from direct exposure to water or to a condensation-prone environment.
- The continuous operating range of the MSLC-2 control is -40 °C to +70 °C (-40 °F to +158 °F).
- Provide adequate ventilation for cooling. Shield the unit from radiant heat sources.
- Do not install near high-voltage, high-current devices.
- Allow adequate space in front of the unit for servicing.
- Do not install where objects can be dropped on the terminals.
- Ground the chassis for proper safety and shielding.
- The control must NOT be mounted on the engine.

© Woodward Page 21/253

Housing

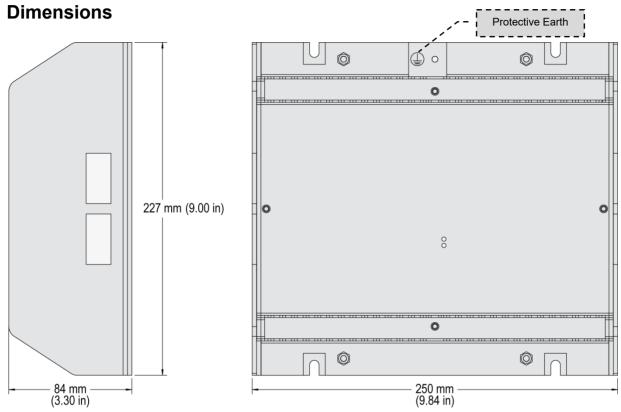


Figure 2-1: Housing MSLC-2 - dimensions

Page 22/253 © Woodward

Installation

The unit is to be mounted to the switch cabinet back using four screws with a maximum diameter of 6 mm. Drill the holes according to the dimensions in Figure 2-2 (dimensions shown in mm).

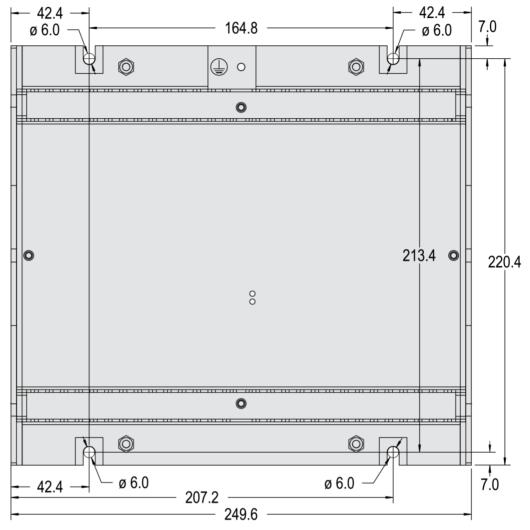


Figure 2-2: Housing - drill plan

© Woodward Page 23/253

Terminal Arrangement

NOTE

The Protective Earth terminal 61 is not connected on the MSLC-2. The protective earth connection at the sheet metal housing must be used instead (refer to Figure 1-2).

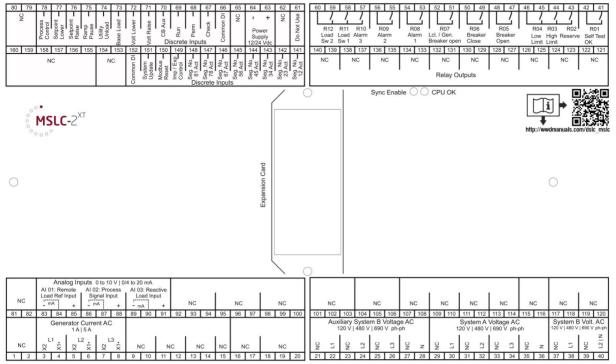


Figure 2-3: MSLC-2 - terminal arrangement

LEDs

LED "Sync Enable"				
Off	System A NOK (V, f) OR System B NOK (V, f)			
Green	Ready for synchronization, CB Aux can be closed			
Red	System A OK (V, f) AND System B OK (V, f), Synchronizer Voltage-Frequency Window = Not OK			
Orange	Boot up or "Firmware Update Procedure" with ".Scp" file, phase 1 (file transfer)			
Toggling red	"Firmware Update Procedure" with ".Scp" file, phase 2 (installing files)			

LED "CPU (LED "CPU OK"				
Off	The unit is not ready for operation. No supply voltage or hardware problem occurred.				
Green	The unit is ready for operation				
Toggling green	The process "System update" is active				
Red	The unit is not ready for operation				

Page 24/253 © Woodward

Wiring Diagrams

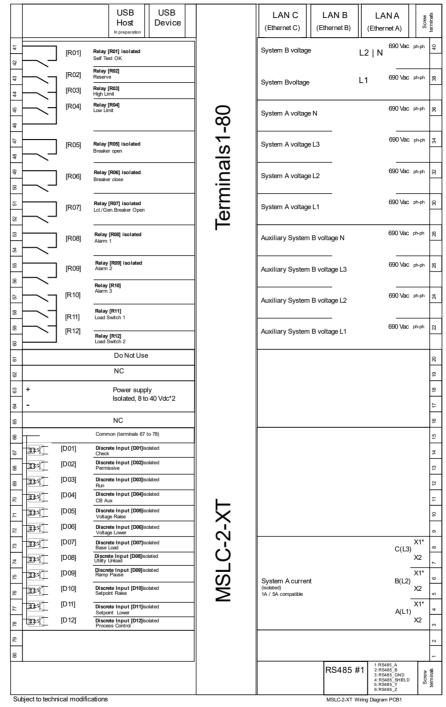


Figure 2-4: Wiring diagram - MSLC-2 - 1/2

© Woodward Page 25/253

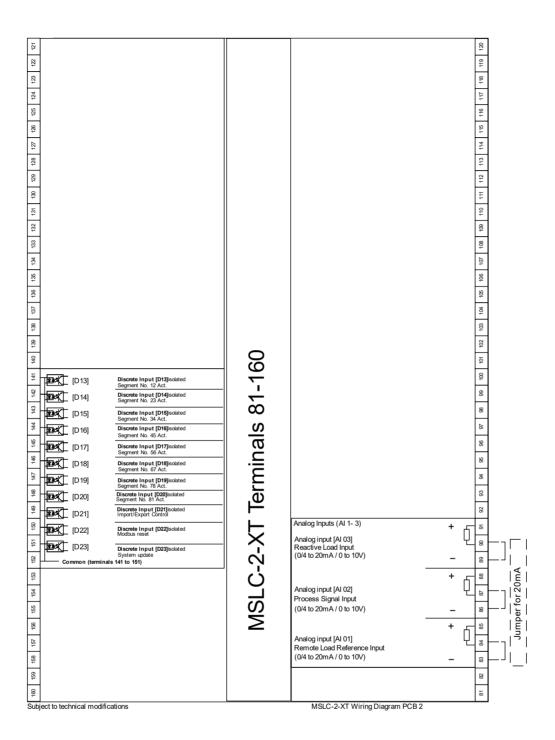


Figure 2-5: Wiring diagram - MSLC-2 - 2/2

Page 26/253 © Woodward

Connections

WARNING

All technical data and ratings indicated in this chapter are not definite! Only the values indicated in paragraph Appendix A. Fehler! Verweisquelle konnte nicht gefunden werden. on page Fehler! Textmarke nicht definiert. are valid!

The following chart may be used to convert square millimeters [mm²] to AWG and vice versa:

AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²
30	0.05	21	0.38	14	2.5	4	25	3/0	95	600MCM	300
28	0.08	20	0.5	12	4	2	35	4/0	120	750MCM	400
26	0.14	18	0.75	10	6	1	50	300MCM	150	1000MCM	500
24	0.25	17	1.0	8	10	1/0	55	350MCM	185		
22	0.34	16	1.5	6	16	2/0	70	500MCM	240		

Table 2-1: Conversion chart - wire size

System A and System B voltage measuring terminals no longer differentiate with separate terminals for each voltage range.

General recommendations Ensure appropriate cable cross sections following the local standards and restrictions. The maximum cable cross section of the terminal blocks is 2.5 mm². For every type of signal lines like power supply, DI, DO, AI, AO:

- · Return line has to be close to forward signal line.
- · Use cables instead of single wires.
 - In case of using single wires please do at least one twist per meter to keep wires together closely.

© Woodward Page 27/253

Power Supply

WARNING - Protective Earth

Protective Earth (PE) must be connected to the unit to avoid the risk of electric shock. The conductor providing the connection must have a wire larger than or equal to 2.5 mm² (14 AWG). The connection must be performed properly.

Please use the protective earth connection at the sheet metal housing (refer to Figure 2-1 on page 22).

WARNING – Permissible differential voltage

The maximum permissible differential voltage between terminal 64 (B-) and terminal 61 (PE) is 100 VRMS. On engines where a direct connection between battery minus and PE is not possible, it is recommended to use an isolated external power supply if the differential voltage between battery minus and PE exceeds 100 VRMS.

NOTE

Woodward strictly recommends using a power supply that is fulfilling the SELV restrictions (SELV = separated or safety extra-low voltage, see IEC)

NOTE

Woodward recommends using one of the following slow-acting protective devices in the supply line to terminal 63:

- · Fuse NEOZED D01 6A or equivalent or
- · Miniature Circuit Breaker 6A / Type C

(for example: ABB type: S271C6 or equivalent)

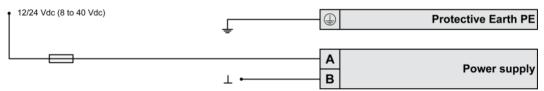


Figure 2-6: Power supply

Figure	Terminal	Description	A_{max}
Α	63	12/24Vdc (8 to 40.0 Vdc)	2.5 mm ²
В	64	0 Vdc	2.5 mm ²

Table 2-2: Power supply - terminal assignment

Page 28/253 © Woodward

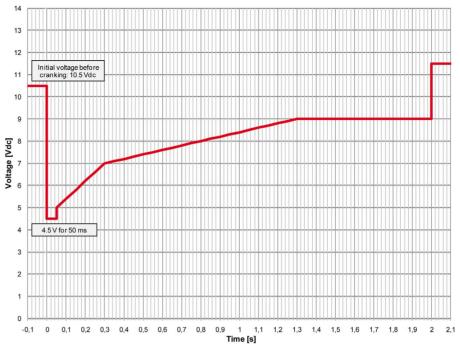


Figure 2-7: Power supply - crank waveform at maximum load

© Woodward Page 29/253

Voltage Measuring

WARNING - Protective Earth

The maximum permissible voltage against ground connected on the easYgen is 600 Volt. This is to consider if phase voltages are grounded.

NOTE

Woodward recommends protecting the voltage measuring inputs with slow-acting fuses rated for 2 to 6 A.

NOTE

The wide range terminals allow several voltages. The current voltage (range) of the application must be "told" to the genset controller device. Settings are described in chapter "Configure Measurement".

NOTE

The voltage measuring inputs for 120 V, 480 V, and 690 V are using the same terminals 30 to 36. The current voltage range must be selected by the corresponding settings via HMI and/or ToolKit. Parameter $\vdash\!\!\!\vdash >$ 1800 ("Gen. PT secondary rated volt.") must be configured to the correct value to ensure proper measurement.

Voltage Measuring: System A

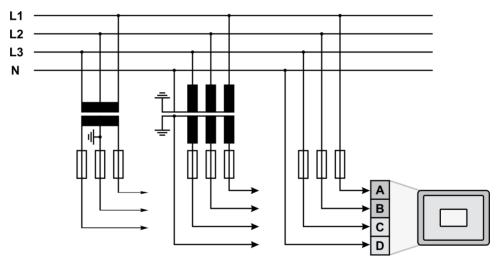


Figure 2-8: Voltage measuring - system A

Figure	Terminal	Description	A_{max}
Α	30	System A Voltage AØ (L1)	2.5 mm ²
В	32	System A Voltage BØ (L2)	2.5 mm²
С	34	System A Voltage CØ (L3)	2.5 mm²
D	36	System A Voltage N	2.5 mm²

Table 2-3: Voltage measuring – terminal assignment – System A voltage

Page 30/253 © Woodward

Voltage Measuring: System A

Parameter Setting '3Ph 4W OD' (3-phase, 4-wire, Open delta)

System A that is connected to the load through a 3-phase, 4-wire connection but have the device wired for a 3-phase, 3-wire installation may have the L2 phase grounded on the secondary side. In this application the device will be configured for 3-phase, 4-wire open delta for correct power measurement.

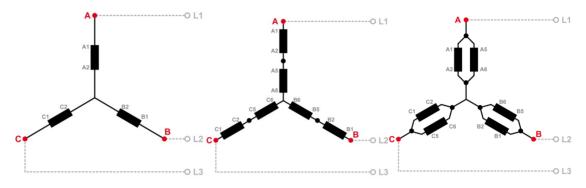


Figure 2-9: Voltage measuring – system A windings, 3Ph 4W OD

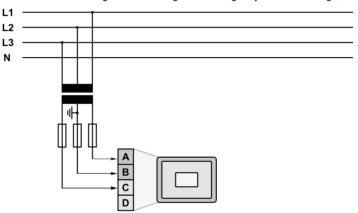


Figure 2-10: Voltage measuring – system A measuring inputs, 3Ph 4W OD

Figure	Terminal	Description
A	30	System A Voltage AØ (L1)
В	32	System A Voltage BØ (L2)
С	34	System A Voltage CØ (L3)
D	36	Not connected

Table 2-4: Voltage measuring - terminal assignment - System A, 3Ph 4W OD

Voltage Measuring: System A, Parameter Setting '3Ph 4W' (3-phase, 4-wire)

© Woodward Page 31/253

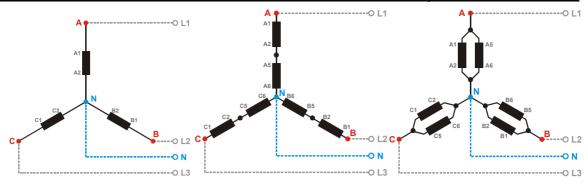


Figure 2-11: Voltage measuring – system A windings, 3Ph 4W

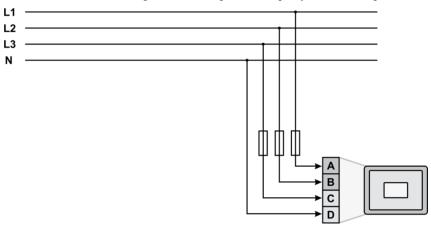


Figure 2-12: Voltage measuring – system A measuring inputs, 3Ph 4W

Figure	Terminal	Description
А	30	System A Voltage AØ (L1)
В	32	System A Voltage BØ (L2)
С	34	System A Voltage CØ (L3)
D	36	System A Voltage DØ (N)

Table 2-5: Voltage measuring – terminal assignment – system A, 3Ph 4W

Page 32/253 © Woodward

Voltage Measuring: System A, Parameter Setting '3Ph 3W' (3-phase, 3-wire)

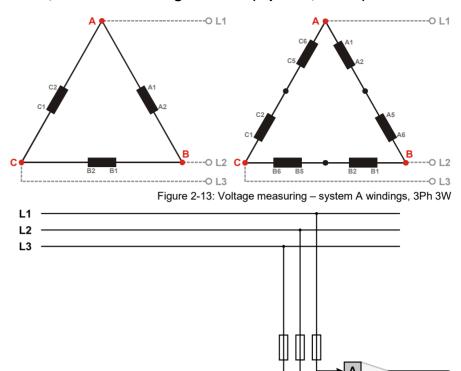


Figure 2-14: Voltage measuring – system A measuring inputs, 3Ph 3W

В

Figure	Terminal	Description
А	30	System A Voltage AØ (L1)
В	32	System A Voltage BØ (L2)
С	34	System A Voltage CØ (L3)
D	36	Not connected

Table 2-6: Voltage measuring - terminal assignment - system A, 3Ph 3W

© Woodward Page 33/253

Voltage Measuring: System B

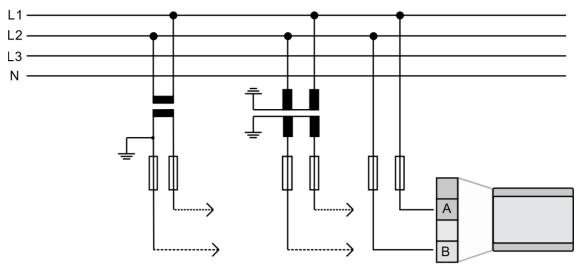


Figure 2-15: Voltage measuring – system B

Figure	Terminal	Description	A_{max}
A	38	System B Voltage AØ (L1)	2.5 mm²
В	40	System B Voltage BØ (L2) N	2.5 mm²

Table 2-7: Voltage measuring - terminal assignment - system B voltage

NOTE

Never configure the System B measurement for phase-neutral, if System A is configured as 3ph 3W without being the neutral in the middle of the triangle. The phase angle for synchronization would be incorrect.

Page 34/253 © Woodward

Voltage Measuring: System B, Parameter Setting '1Ph 2W' (1-phase, 2-wire)

NOTE

The 1-phase, 2-wire measurement may be performed phase-neutral or phase-phase. Please note to configure and wire the MSLC-2 consistently. Refer to the chapter Configuration & Operation.

'1Ph 2W' Phase-Neutral Measuring

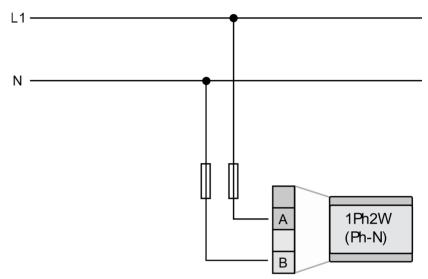


Figure 2-16: Voltage measuring – system B measuring inputs, 1Ph 2W (phase-neutral)

Figure	Terminal	Description
А	38	System B Voltage AØ (L1)
В	40	System B Voltage BØ (N)

Table 2-8: Voltage measuring - terminal assignment – system B, 1Ph 2W (phase-neutral)

'1Ph 2W' Phase-Phase Measuring

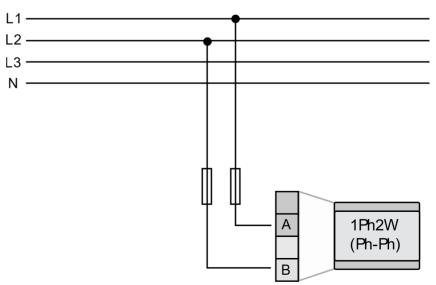


Figure 2-17: Voltage measuring – system B measuring inputs, 1Ph 2W (phase-phase)

© Woodward Page 35/253

MSLC-2XT - Master Synchronizer and Load Control

Figure	Terminal	Description
А	38	System B Voltage AØ (L1)
В	40	System B Voltage BØ (L2)

Table 2-9: Voltage measuring - terminal assignment – system B, 1Ph 2W (phase-phase)

Page 36/253 © Woodward

Voltage Measuring: Auxiliary System B

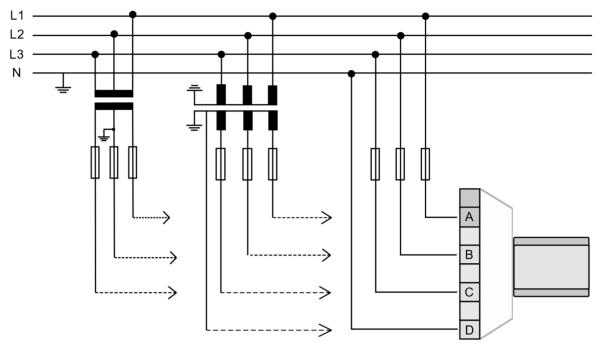


Figure 2-18: Voltage measuring – auxiliary system B

Figure	Terminal	Description	A_{max}
Α	22	Auxiliary system B Voltage AØ (L1)	2.5 mm²
В	24	Auxiliary system B Voltage BØ (L2)	2.5 mm²
С	26	Auxiliary system B Voltage CØ (L3)	2.5 mm²
D	28	Auxiliary system B Voltage N	2.5 mm²

Table 2-10: Voltage measuring - terminal assignment - auxiliary system B voltage

NOTE

Although Auxiliary System B measurement is used (connected to the device), System B measurement needs to be connected to the device.

NOTE

- If Auxiliary System B is used, checking the plausibility between Auxiliary System B and System B is active.
- L1-L2 voltages in both systems are compared.
- Alarm ID 7770 "System B mismatch" does not occurs if both L1-L2 voltages are in operating range or both dead.

The dead busbar closure is blocked, when this alarm occurs.

© Woodward Page 37/253

Voltage Measuring: Auxiliary System B, Parameter Setting '3Ph 4W' (3-phase, 4-wire)

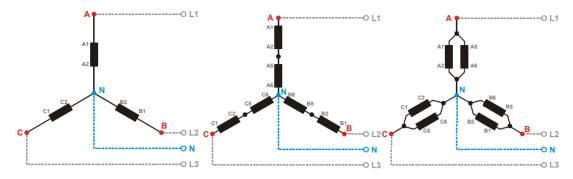


Figure 2-19: Voltage measuring - auxiliary system B PT windings, 3Ph 4W

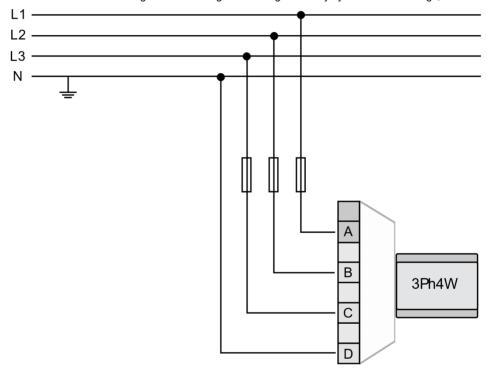


Figure 2-20: Voltage measuring - auxiliary system B measuring inputs, 3Ph 4W

Figure	Terminal	Description
Α	22	Auxiliary system B Voltage AØ (L1)
В	24	Auxiliary system B Voltage BØ (L2)
С	26	Auxiliary system B Voltage CØ (L3)
D	28	Auxiliary system B Voltage N

Table 2-11: Voltage measuring - terminal assignment - auxiliary system B, 3Ph 4W

Page 38/253 © Woodward

Voltage Measuring: Auxiliary System B, Parameter Setting '3Ph 3W' (3-phase, 3-wire)

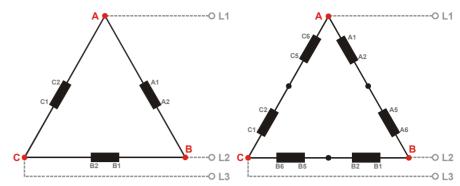


Figure 2-21: Voltage measuring - auxiliary system B PT windings, 3Ph 3W

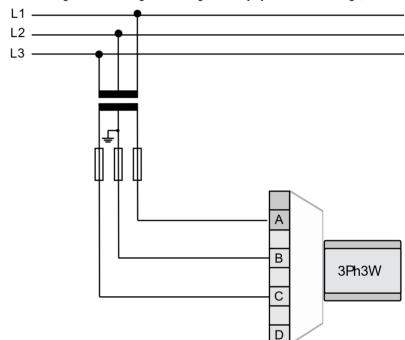


Figure 2-22: Voltage measuring - auxiliary system B measuring inputs, 3Ph 3W

Figure	Terminal	Description
Α	22	Auxiliary system B Voltage AØ (L1)
В	24	Auxiliary system B Voltage BØ (L2)
С	26	Auxiliary system B Voltage CØ (L3)
D	28	Not connected

Table 2-12: Voltage measuring - terminal assignment - auxiliary system B, 3Ph 3W

© Woodward Page 39/253

Current Measuring

CAUTION

Before disconnecting the device, ensure that the current transformer/CT is short-circuited.

System A Current

NOTE

Generally, one line of the current transformers secondary is to be grounded close to the CT.

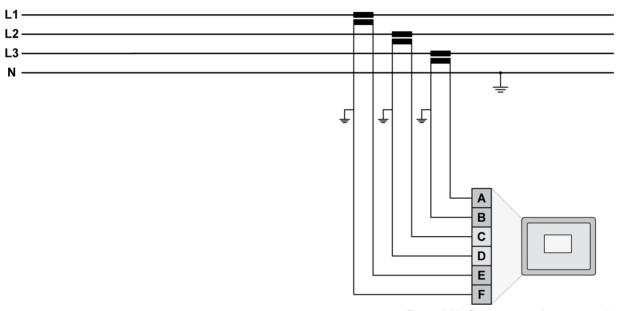


Figure 2-23: Current measuring – system A

Figure	Terminal	Description	A_{max}
Α	8	System A current C (L3) – X1	2.5 mm ²
В	7	System A current C (L3) – X2	2.5 mm ²
С	6	System A current B (L2) – X1	2.5 mm ²
D	5	System A current B (L2) – X2	2.5 mm ²
E	4	System A current A (L1) – X1	2.5 mm ²
F	3	System A current A (L1) – X2	2.5 mm ²

Table 2-13: Current measuring - terminal assignment – system A current

Page 40/253 © Woodward

Current Measuring: System A, Parameter Setting 'L1 L2 L3'

Figure 2-24: Current measuring - system A, L1 L2 L3

L1 L2 L3			Wiring to	erminals			Notes
MSLC-2 terminal	3	4	5	6	7	8	
Phase	X2 - A(L1)	X1 - A(L1)	X2 - B(L2)	X1 - B(L2)	X2 - C(L3)	X1 - C(L3)	

Table 2-14: Current measuring - terminal assignment – system A, L1 L2 L3

Current Measuring: System A, Parameter Setting 'Phase L1', 'Phase L2' & 'Phase L3'

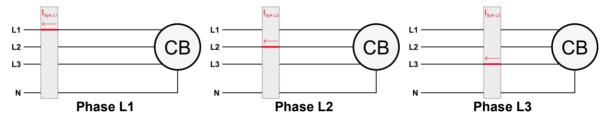


Figure 2-25: Current measuring - system A, phase Lx

			Wiring to	erminals			Notes
Phase L1							
MSLC-2 terminal	3	4	5	6	7	8	
Phase	X2 - A(L1)	X1 - A(L1)					
Phase L2							
MSLC-2 terminal	3	4	5	6	7	8	
Phase			X2 - B(L2)	X1 - B(L2)			
Phase L3							
MSLC-2 terminal	3	4	5	6	7	8	
Phase					X2 - C(L3)	X1 - C(L3)	

Table 2-15: Current measuring - terminal assignment - system A, phase Lx

© Woodward Page 41/253

Power Measuring

If the unit's current transformers are wired according to the diagram shown, the following values are displayed.

Utility Breaker MSLC-2		
Parameter	Description	Sign displayed
Mains real power	Importing KW (from Utility) Powerflow from System A to System B	+ Positive KW
Mains real power	Exporting KW (to Utility) Powerflow from System A to System B	- Negative KW
Mains power factor (cos φ)	Inductive / lagging	+ Positive
Mains power factor (cos φ)	Capacitive / leading	- Negative
Tie-Breaker MSLC-2	Description	O' d'andanad
Parameter	Description	Sign displayed
System A real power	Powerflow from System A to System B in kW	+ Positive
System A real power	Powerflow from System A to System B in kW	- Negative
System A power factor (cos φ)	Inductive / lagging reactive powerflow from System A to System B	+ Positive
System A power factor (cos φ)	Capacitive / leading reactive powerflow from System A to System B	- Negative

Table 2-16: Power Measuring – sign displayed – Utility / Tie

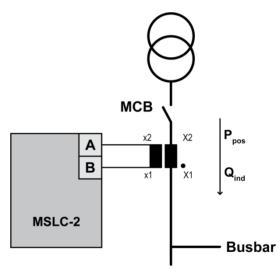


Figure 2-26: Power measuring - direction of power

Figure	Terminal	Description	A_{max}
Α	3	X2 A (L1) System A Current	2.5 mm ²
В	4	X1 A (L1) System A Current	2.5 mm ²

Table 2-17: Power measuring - terminal assignment

Page 42/253 © Woodward

Power Factor Definition

The phasor diagram is used from the generator's view. Power factor is defined as follows.

Power Factor is defined as a ratio of the real power to apparent power. In a purely resistive circuit, the voltage and current waveforms are instep resulting in a ratio or power factor of 1.00 (often referred to as unity). In an inductive circuit the current lags behind the voltage waveform resulting in usable power (real power) and unusable power (reactive power). This results in a positive ratio or lagging power factor (i.e. 0.85lagging). In a capacitive circuit the current waveform leads the voltage waveform resulting in usable power (real power) and unusable power (reactive power). This results in a negative ratio or a leading power factor (i.e. 0.85leading).

Inductive: Electrical load whose current waveform lags the voltage waveform thus having a lagging power factor. Some inductive loads such as electric motors have a large startup current requirement resulting in lagging power factors.

Capacitive: Electrical load whose current waveform leads the voltage waveform thus having a leading power factor. Some capacitive loads such as capacitor banks or buried cable result in leading power factors.

Different power factor displays at the unit:

i0.91 (inductive)	c0.93 (capacitive)
lg.91 (lagging)	ld.93 (leading)

Reactive power display at the unit:

70 kvar (positive)	001 / ()
//) Kyar (nositiya)	-60 kvar (negative)
1 O Kvai (DOSilive)	1-00 Kvai (Hedalive)

Output at the interface:

,			
1 1 /r	ocitivo)		(nogativa)
	positive)	_	(HEUdlive)
, (r			

In relation to the voltage, the current is

lagging leading

The generator is

over excited under excited

Control: If the control unit is equipped with a power factor controller while in parallel with the utility:

A voltage lower "-" signal is output as long as the	A voltage raise "+" signal is output as long as the
measured value is "more inductive" than the ref-	measured value is "more capacitive" than the ref-
erence setpoint	erence setpoint
Example: measured = i0.91; setpoint = i0.95	Example: measured = c0.91; setpoint = c0.95

© Woodward Page 43/253

Phasor diagram:

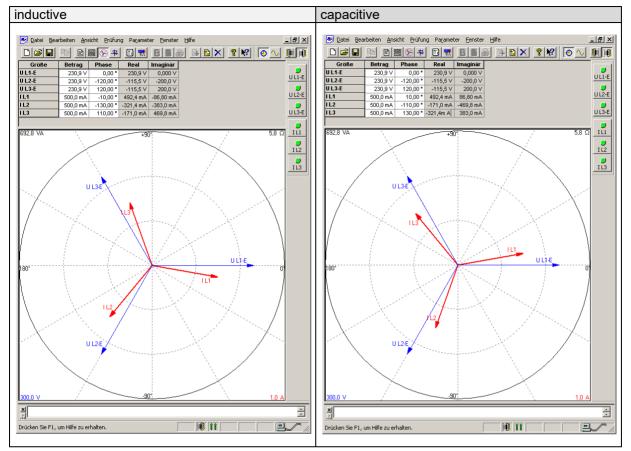


Figure 2-27: Phasor diagram - inductive / capacitive

Page 44/253 © Woodward

Discrete Inputs

Discrete Inputs: Signal Polarity

The discrete inputs are electrically isolated which permits the polarity of the connections to be either positive or negative.

NOTE

All discrete inputs must use the same polarity, either positive or negative signals, due to the common ground.

Discrete Inputs: Positive Polarity Signal

Figure 2-28: Discrete inputs - alarm/control input - positive signal

Discrete Inputs: Negative Polarity Signal

Figure 2-29: Discrete inputs - alarm/control input - negative signal

	minal	Description			A_{max}
Term.	Com.				
Α	В				
	67	Discrete input [DI 01]	{all}	Check	2.5 mm ²
	68	Discrete input [DI 02]	{all}	Permissive	2.5 mm ²
	69	Discrete input [DI 03]	{all}	Run	2.5 mm ²
	70	Discrete input [DI 04]	{all}	CB Aux	2.5 mm ²
66	71	Discrete input [DI 05]	{all}	Voltage Raise	2.5 mm ²
GND	72	Discrete input [DI 06]	{all}	Voltage Lower	2.5 mm ²
com-	73	Discrete input [DI 07]	{all}	Base Load	2.5 mm ²
mon ground	74	Discrete input [DI 08]	{all}	Utility Unload	2.5 mm ²
9	75	Discrete input [DI 09]	{all}	Ramp Pause	2.5 mm ²
	76	Discrete input [DI 10]	{all}	Setpoint Raise	2.5 mm ²
	77	Discrete input [DI 11]	{all}	Setpoint Lower	2.5 mm ²
	78	Discrete input [DI 12]	{all}	Process Control	2.5 mm ²

Table 2-18: Discrete input - terminal assignment 1/2

© Woodward Page 45/253

Ter n Term.	minal Com.	Description			A _{max}
Α	В				
	141	Discrete input [DI 13]	{all}	Segment No. 12 Act.	2.5 mm ²
	142	Discrete input [DI 14]	{all}	Segment No. 23 Act.	2.5 mm ²
	143 Discrete	Discrete input [DI 15]	{all}	Segment No. 34 Act.	2.5 mm ²
152	144	Discrete input [DI 16]	{all}	Segment No. 45 Act.	2.5 mm ²
	145	Discrete input [DI 17]	{all}	Segment No. 56 Act.	2.5 mm ²
GND com-	146	Discrete input [DI 18]	{all}	Segment No. 67 Act.	2.5 mm ²
mon	147	Discrete input [DI 19]	{all}	Segment No. 78 Act.	2.5 mm ²
ground	148	Discrete input [DI 20]	{all}	Segment No. 81 Act.	2.5 mm ²
	149	Discrete input [DI 21]	{all}	Imp./Exp. control	2.5 mm ²
	150	Discrete input [DI 22]	{all}	Modbus Reset	2.5 mm ²
	151	Discrete input [DI 23]	{all}	System update	2.5 mm ²

Table 2-19: Discrete input - terminal assignment 2/2

	DI CB AUX	DI Utility Unload	DI Base Load	DI Imp/Exp Control	DI Process Control	DI Ramp Pause	DI Setpoint Raise	DI Setpoint Lower
Off Line	0	Х	X	X	Х	Х	X	X
Base Load	1	0	1	0	0	0	0	0
Base Load Raise	1	0	1	0	0	0	1	0
Base Load Lower	1	0	1	0	0	0	0	1
Base Load ¹	1	0	1	0	0	0	1	1
Remote								
Utility Unload ²	1	1	Х	Х	X	0	Х	Х
Local Unload ³	1	0	1	0	0	0	0	1
Ramp Pause 4	1	Х	Х	Х	Х	1	Х	Х
Import/	1	0	Х	1	0	0	0	0
Export mode								
I/E Raise	1	0	Х	1	0	0	1	0
I/E Lower	1	0	Х	1	0	0	0	1
I/E Remote ¹	1	0	Х	1	0	0	1	1
Process Control	1	0	Х	Х	1	0	0	0
Process Raise	1	0	Х	Х	1	0	1	0
Process Lower	1	0	Х	Х	1	0	0	1
Process Remote 1	1	0	Х	Х	1	0	1	1

Table 2-20: Load control modes MSLC-2

Page 46/253 © Woodward

¹ Remote reference is activated by closing both setpoint raise and setpoint lower switches at the same time.

² The MSLC-2 can only load the associated generators to 100%. If this is not enough capacity to unload the utility, the unload ramps stops at 100% rated load on the associated generators. The generator high limit alarm, if enabled, will activate at this time.

³ The local plant unload is accomplished by switching to base load mode and supplying a continuous setpoint lower command.

⁴ The ramp pause command will pause all ramps in any mode.

Relay Outputs

Figure 2-30: Relay outputs

Tern	ninal	Description				A_{max}	
Term.	Com.						
Α	В	Form A, N.O. make	contact		T	ype ↓	
42	41	Relay output [R 01]	{all}	Alarm (Self-Test OK)	N.O.	2.5 mm ²
43		Relay output [R 02]	{all}	Reserv	е	N.O.	2.5 mm ²
44	46	Relay output [R 03]	{all}	High Li	mit	N.O.	2.5 mm ²
45		Relay output [R 04]	{all}	Low Lir	nit	N.O.	2.5 mm ²
48	47	Relay output [R 05]	{all}	Breake	r Open	N.O.	2.5 mm ²
50	49	Relay output [R 06]	{all}	Breake	r Close	N.O.	2.5 mm ²
52	51	Relay output [R 07]	{all}	Lcl./Ge	n. Breaker Open	N.O.	2.5 mm ²
54	53	Relay output [R 08]	{all}	Alarm 1		N.O.	2.5 mm ²
56	55	Relay output [R 09]	{all}	Alarm 2	2	N.O.	2.5 mm ²
57		Relay output [R 10]	{all}	Alarm 3	3	N.O.	2.5 mm ²
58	60	Relay output [R 11]	{all}	Load S	witch 1	N.O.	2.5 mm ²
59		Relay output [R 12]	{all}	Load S	witch 2	N.O.	2.5 mm ²

N.O.-normally open (make) contact

Table 2-21: Relay outputs - terminal assignment

CAUTION

The discrete output "Alarm (Self-Test OK)" can be wired in series with an emergency stop function. This means that it must be ensured that the generator circuit breaker can be opened, if this discrete output is de-energized. We recommend signaling this fault independently from the unit if the availability of the plant is important.

NOTE

Alarms 1, 2, and 3 can be used for monitoring only. Don't use alarm messages for protection control!

© Woodward Page 47/253

	DO Alarm	DO Reserve	DO High Limit	DO Low Limit	DO Breaker Open	DO Breaker Close	DO LCL/ Gen	DO Alarm 1	DO Alarm 2	DO Alarm 3	DO Load switch 1	DO Load switch 2
					Орон	0,000	Breaker Open				3111131111	Switch 2
Self-Test	Х						Орон					
Reserve		Х										
High load limit												
High process limit			Х									
High voltage limit												
Low load limit												
Low process limit				х								
Low voltage limit												
Utility Unload												
(DI 8)					Х							
Synchronization						V						
deadbus closure						Х						
Local Generator												
Breaker open							Х					
(DI 11)												
Synchronizer												
timeout												
Reclose limit												
High load limit												
Low load limit												
High process limit												
Low process limit												
Low voltage limit												
High voltage limit												
Voltage range limit												
Communication								Х	Х	Х		
error												
Missing member												
Centralized alarm												
CB open fail												
Deadbus closure												
mismatch												
System B mis-												
match												
Rotation mis-												
match												
Load switch 1											Х	
Load switch 2												X

Table 2-22: Relay outputs driven by ...

NOTE

Refer to Fehler! Verweisquelle konnte nicht gefunden werden.: Connecting 24 V Relays on page 227 for interference suppressing circuits when connecting 24 V relays.

Page 48/253 © Woodward

Analog Inputs

The following senders may be used for the analog inputs:

- 0 to 20mA
- 4 to 20mA
- 0 to 10V
- 0 to 5V
- 1 to 5V

Wiring Examples

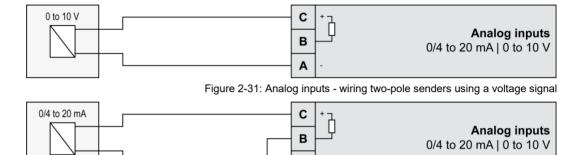


Figure 2-32: Analog inputs - wiring two-pole senders (external jumper used for current signal)

Figure	Terminal	Description	A_{max}			
Α	83	Analog input [Al 04]	2.5 mm ²			
В	84	Analog input [Al 01]	2.5 mm ²			
С	85 +	Remote Load Reference Input				
Α	86	Analog input [ALO2]	2.5 mm ²			
В	87	Analog input [Al 02] Process Signal Input	2.5 mm ²			
С	88 +	Process Signal Input	2.5 mm ²			
Α	89	Analog input [AL 02]	2.5 mm ²			
В	90	Analog input [Al 03] Reactive Load Input	2.5 mm ²			
С	91 +	Neactive Load Iliput	2.5 mm ²			

Α

Table 2-23: Analog inputs - terminal assignment - wiring two-pole senders

© Woodward Page 49/253

Interfaces

RS-485 Serial Interface (Serial Interface #2)

Figure 2-33: screwable 6-terminal connector RS-485

Terminal	Description	used for FULL duplex mode	used for HALF duplex mode	\mathbf{A}_{max}
1	Α	A (RxD+)	N/A	N/A
2	В	B (RxD-)	N/A	N/A
3	GND	GND - local galvanically isolated	N/A	N/A
4	SHLD	Shield connected to earth via RC element	N/A	N/A
5	Υ	Y (TxD+)	Y (TxD+ / RxD+)	N/A
6	Z	Z (TxD-)	Z (TxD- / RxD-)	N/A

Table 2-24: RS-485 interface #1 - pin assignment

Half-Duplex with Modbus on RS-485

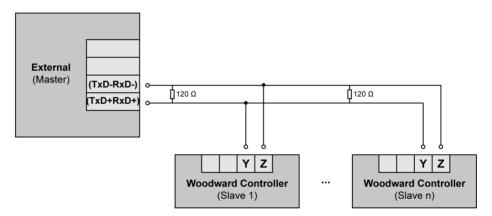


Figure 2-34: RS-485 Modbus - connection for half-duplex operation (120 Ohms termination resistor at both ends)

Full-Duplex with Modbus on RS-485

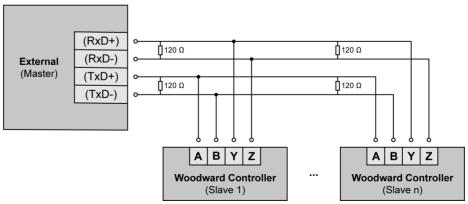


Figure 2-35: RS-485 Modbus - connection for full-duplex operation

Page 50/253 © Woodward

Manual 37947

NOTE

Please note that the MSLC-2 must be configured for half- or full-duplex configuration (parameter 3173).

Shielding

MSLC-2 is prepared for shielding: Terminal 4 and the connector housing are internally grounded via an RC element. Therefore, they may either be grounded directly (recommended) or also via an RC element on the opposite connection.

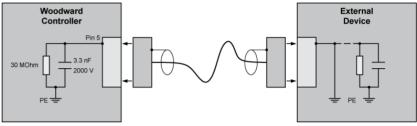


Figure 2-36-1: Shielding preparation (internal RC element)

© Woodward Page 51/253

Serial Interface USB (2.0 slave) interface - Service Port

NOTE

- Avoid electrostatic discharge!
 Avoid electrostatic discharge during USB cable connection to the unit.
- To connect this USB 2.0 (slave) device a USB cable with USB Type A (PC/laptop side) and Type B (Woodward device side) connectors is necessary.
- USB cable length shall be limited up to 3 m. It is recommended to use professional (high quality) USB cable: 28AWG/1P+24AWG/2C with good shielding.

Use USB service port for ToolKit connection.

The USB interface is a service port and the preferred for ToolKit connection!

'Read only' USB interface

For others than ToolKit connection the USB interface is read-only!

It can be used for further service tasks from manufacturer's side.

Connecting it to a PC/laptop will display the USB interface available and all files prepared from Woodward manufacturing side. Read/write attributes of this service port are restricted to read only.

RJ-45 Ethernet Interfaces (Network A, Network B, Network C)

This Ethernet interface 10/100Base-T/-XT complies with the IEEE 802.3 specifications.

NOTE

Avoid electrostatic discharge!

Avoid electrostatic discharge during Ethernet cable connection to the unit.

Pin assignment

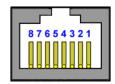


Figure 2-37: RJ-45 connector - Ethernet

Table 25: Pin assignment

Pin	Description	10Base-T	100Base-T
1	Transmit Data+	TX+	TX+
2	Transmit Data-	TX-	TX-
3	Receive Data+	RX+	RX+
4	not connected	NC	NC
5	not connected	NC	NC
6	Receive Data-	RX-	RX-
7	not connected	NC	NC
8	not connected	NC	NC

Table 2-26: RJ-45 interfaces - pin assignment

Page 52/253 © Woodward

Visualization

Two LEDs (green and yellow) indicate communication status as well known by the standard.

- The green LED indicates the link activity: blinking during data transmission.
- The yellow LED indicates the link (speed) status:
 - 10MB LED switched-OFF
 - 100MB LED switched-ON

General notes

Ethernet category 5 (STP CAT 5) shielded cable is required with shielded plug RJ45. The chosen switch shall support a transmission speed of 10/100 Mb/s with a network segment expansion capability of 100 m.

NOTE

Flexibility

All Ethernet ports have auto MDI/MDI-X functionality what allows to connect straight-through or crossover Ethernet cable.

The Ethernet ports are named twice but mean the same: Ethernet #1 or Ethernet A; Ethernet #2 or Ethernet B; and Ethernet #3 or Ethernet C.

Cable length / distance

The maximum length from connection to connection is 100 m. Some third-party suppliers offer technology to expand the connection.

Troubleshooting

- Check first the power supply of the switches
- Check the IP addressed of the single devices
- Take care that principly each port is running in an own network IP address range.

© Woodward Page 53/253

Chapter 3. Configuration & Operation

Configuration via PC

Install ToolKit Configuration and Visualization Software

NOTE

Woodward's ToolKit software is required to configure the unit via PC.

ToolKit Version 6.4 or higher

Install ToolKit Software

- 1. Please scan the QR code or use the link.
- 2. Go to the section "Software".

Alternatively ToolKit can be downloaded from our Website. Please proceed as follows:

- 1. Go to http://www.woodward.com/software
- 2. Select ToolKit in the list and click the "Go" button
- 3. Click "More Info" to get further information about ToolKit
- 4. Choose the preferred software version and click "Download"
- 5. Now you need to login with your e-mail address or register first
- 6. The download will start immediately

Minimum system requirements for ToolKit:

- Microsoft Windows® 10, 8.1, 7, Vista (32- & 64-bit
- Microsoft .NET Framework version 4.5.1 or higher
- 1 GHz or faster x86 or x64 processor
- 1 GB of RAM
- Minimum 800 by 600 pixel screen with 256 colors
- Serial Port and Serial Extension Cable
- CD-ROM drive

Page 54/253 © Woodward

Manual 37947

NOTE

Required version or higher of Microsoft .NET Framework must be installed on your computer to be able to install ToolKit. If not already installed, Microsoft .NET Framework will be installed automatically, if internet access is given.

Install ToolKit Configuration Files

- 1. Please scan the QR code or use the link.
- 2. Please go to the section "Configuration Files" and select the part number (P/N) and revision of your device

Alternatively ToolKit configuration files can be downloaded from our Website. Please proceed as follows:

- Go to https://www.woodward.com/en/support/industrial/technical-help-desk/control-configuration-files
- 2. Please insert the part number (P/N) and revision of your device into the corresponding fields
- 3. Select ToolKit in the application type list
- 4. Click "Search"

NOTE

ToolKit is using the following files:

*.WTOOL

File name composition: [P/N1]*1-[Revision]_[Language ID]_[P/N2]*2-[Revision]_[# of visualized

gens].WTOOL

Example file name: 8440-1234-NEW_US_5418-1234-NEW.WTOOL

Content of the file: Display screens and pages for online configuration, which are associated with

the respective *.SID file

*.SID

File name composition: [P/N2]*2-[Revision].SID Example file name: 5418-1234-NEW.SID

Content of the file: All display and configuration parameters available in ToolKit

*.WSET

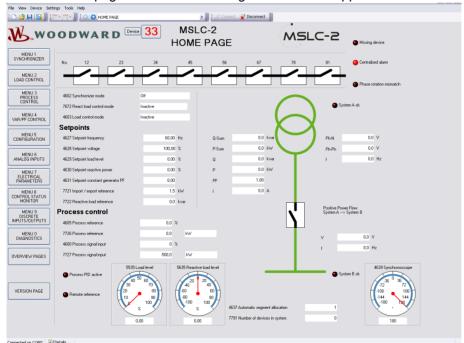
File name composition: [user defined].WSET Example file name: MSLC settings.WSET

Content of the file: Default settings of the ToolKit configuration parameters provided by the SID

file or user-defined settings read out of the unit.

*1 P/N1 = Part number of the unit

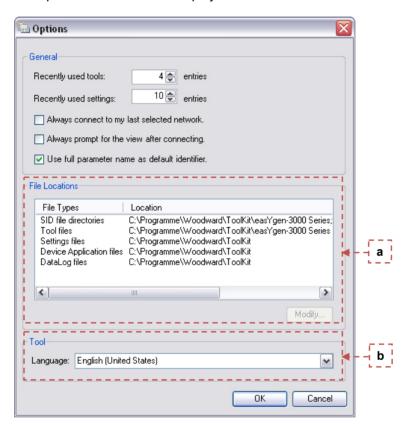
*2 P/N2 = Part number of the software in the unit


© Woodward Page 55/253

Starting ToolKit Software

- 1. Start ToolKit via Windows Start menu -> Programs -> Woodward -> ToolKit 4.x
- 2. Please press the button "Open Tool"

- 3. Go to the "Application" folder and open then the folder equal to the part number (P/N) of your device (e.g. 8440-1234). Select the wtool file (e.g. 8440-1234-NEW_US_5418-1234-NEW.wtool) and click "Open" to start the configuration file
- 4. Now the home page of the ToolKit configuration screen appears


Page 56/253 © Woodward

Configure ToolKit Software

1. Start the configuration by using the toolbar. Please go to Tools -> Options

2. The options window will be displayed

- a. Adjust the default locations of the configuration files
- b. The displayed language can be selected here
- 3. The changes become effective after clicking "OK"

NOTE

Please use the ToolKit online help for further information.

© Woodward Page 57/253

Connecting ToolKit and the MSLC-2 Unit

For configuration of the unit via ToolKit two communication paths are possible:

1. Via USB

This is the easiest way to connect one ToolKit running @ one PC/laptop with one device each. Refer to *Connect ToolKit viaUSB* for details.

2. Via Ethernet

This configuration allows to use the already installed Ethernet connection for communication of the DSLC-2 units itself and the configuration of all units in the network with one ToolKit running @ one PC. This configuration needs more preparation.

Refer to Connect ToolKit via Ethernet for details.

Connect ToolKit via USB

For configuration of the unit with ToolKit via USB, please proceed as follows:

- Connect this USB 2.0 (slave) device a USB cable with USB Type A (PC/laptop side) and Type B (Woodward device side).
- 2. Open ToolKit via Windows Start menu -> Programs -> Woodward -> ToolKit version 6.4 or higher.
- 3. Connect ToolKit by selected the corresponding COM Port. For more details see ToolKit Manual.

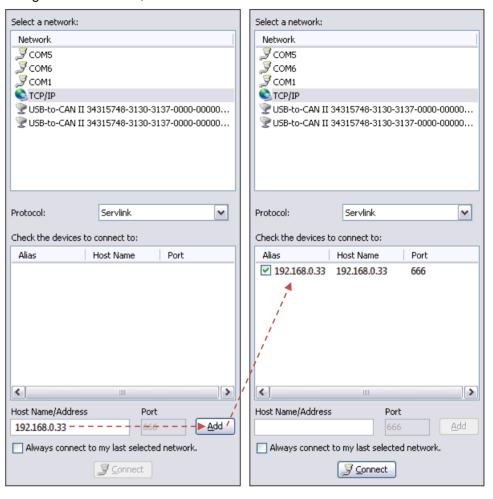
Connect ToolKit via Ethernet

NOTE

It is recommended to connect ToolKit via Network A. Firewall settings must allow ToolKit to interact.

For configuration of the unit via ToolKit please proceed as follows:

- 1. Connect your PC and the control unit via the Ethernet communications cable.
- 2. Open ToolKit via Windows Start menu -> Programs -> Woodward -> ToolKit 4.x
- 3. From the main ToolKit window, click File then select "Open Tool"... or click the Open Tool icon on the tool bar.
- 4. Locate and select the desired tool file (*.WTOOL) in the ToolKit data file directory and click Open.
- 5. From the main ToolKit window, click the icon \$\mathcal{Z}\$ Connect on the toolbar.

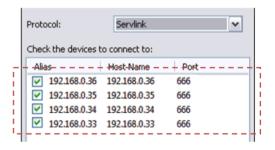


The connect dialog window will open if the option is enabled.

Page 58/253 © Woodward

Adding Devices:

In the field Host Name/Address an IP Address can be entered - for example for Device ID = 33
 - and then pressing the "Add Button",



NOTE

Please take care that the IP address is correct. It must fit to the device settings and not be used twice!

• Devices 34, 35, and 36 can be added accordingly:

Deleting/Renaming Devices:

Mouse right click on a selected IP Address, then "Delete" or "Rename" is possible.

NOTE

If one ToolKit is connected to a device all (!) other ToolKit access in this system is disabled for both Networks A and B. The number of the connected device will be displayed on the top of the ToolKit screen left beside the Menu number.

How to connect to a certain device and to swap control from one to another device is described below:

© Woodward Page 59/253

Selecting devices for ToolKit communication

Click on "Connect":

Click on "Details":

• In row of device 35 click on <None> pull-down button and select "ToolConfigurator":

Device 35 is selected:

To select another device e.g., device 37, first deselect device 35:
 In row of device 35 click on < ToolConfigurator> pull-down button and select " None "

Than in row of device 37 click on <None> pull-down button and select "ToolConfigurator" as
described above. Selection works with one of the connected devices so deselect the other first!

NOTE

The Device ID is important for system management. Device ID and/or other IP address mismatch can cause reduced functionality of missing member alarm or even loss of control. Use System update (parameter 7789) for changing device ID! See chapter on page 91 for more details.

NOTE

Device access always is depending on the device's current password level. Be aware of each device's password level—especially if connecting to several devices as described above! E.g., loading .wset files is depending on the password level. Only parameters with the device's current password level or lower will be loaded:

Different password levels = different load results!

Page 60/253 © Woodward

View MSLC-2XT Data with ToolKit

The following figure shows an example visualization screen of ToolKit:

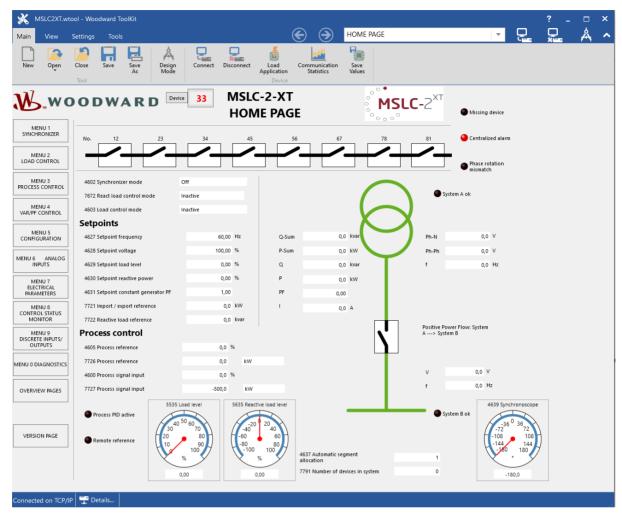


Figure 3-1: ToolKit - visualization screen

Navigation through the various visualization and configuration screens is performed by clicking on the and icons, by selecting a navigation button (e.g.), or by selecting a screen from the drop-down list to the right of the arrow icons.

It is possible to view a trend chart of up to eight values with the trending tool utility of ToolKit. The following figure shows a trending screen of the measured power supply value:

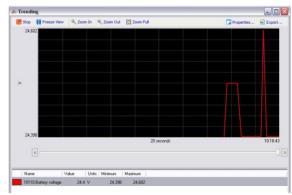


Figure 3-2: ToolKit - analog value trending screen

Each visualization screen provides trending of monitored values by right-clicking on a value and select-

© Woodward Page 61/253

ing the "Add to trend" function. Trending is initiated by clicking on the Start button. Clicking the Export... button will save the trend data to a Comma Separated Values (CSV) file for viewing, editing or printing with office software, like Microsoft Excel, etc. The Properties... button is used to define high and low limits of the scale, sample rate, displayed time span and color of the graph.

Configuring the MSLC-2XT with ToolKit

The following figure shows an example configuration screen of ToolKit:

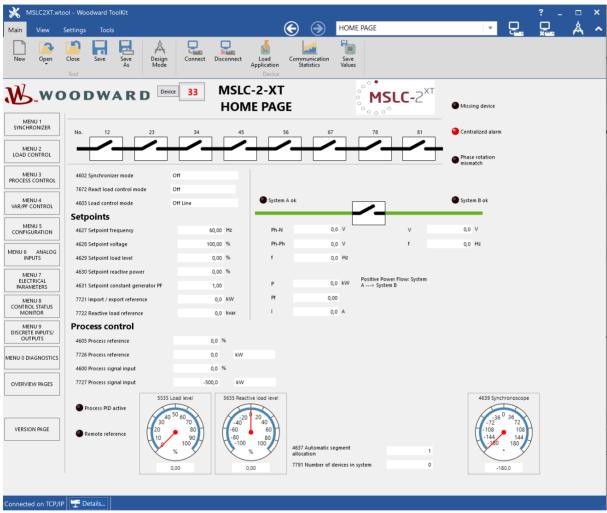


Figure 3-3: ToolKit - configuration screen

Entering a new value or selecting a value from a defined list will change the value in a field. The new value is written to the controller memory by changing to a new field or pressing the Enter key.

Navigation through the various configuration and visualization screens is performed by clicking on the and icons, by selecting a navigation button (e.g.), or by selecting a screen from the drop-down list to the right of the arrow icons.

Page 62/253 © Woodward

The MSLC-2XT Version Page

The ToolKit version page allows you to check the serial number of the unit and versions of the bootloader, operating system and GAP application.

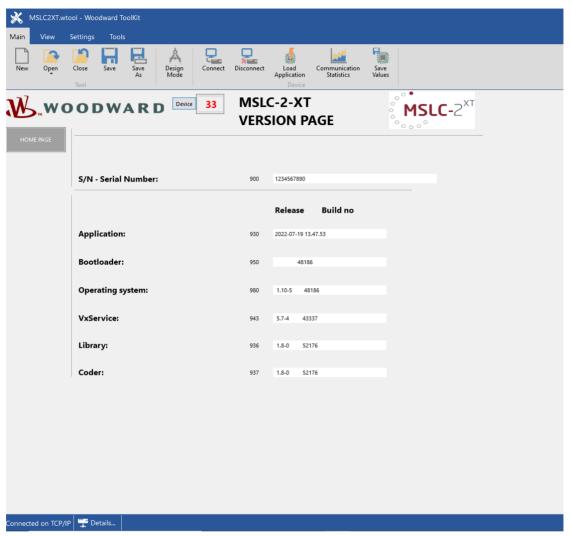


Figure 3-4: ToolKit -version page

© Woodward Page 63/253

Menu (Setpoint) Description

All parameters are assigned a unique parameter identification number (ID). The parameter identification number may be used to reference individual parameters listed in this manual. This parameter identification number is also displayed in the ToolKit configuration screens next to the respective parameter.

MSLC-2XT – Homepage

The appearance of the MSLC-2 Homepage depends on the configuration. If the MSLC-2 type is configured as "Utility" MSLC-2 (parameter 7628), values and pictures are displayed in the sense being located at the utility. On the other side, the "Tie" configured MSLC-2 shows values and pictures related to a tie-breaker sense.

This is the basic page of the MSLC-2. It gives general information, such as:

- The system A condition
- · The system B (busbar) condition
- The condition of the breaker
- The current operating action
- The load and reactive load output to the DSLC-2
- · The segment breaker state

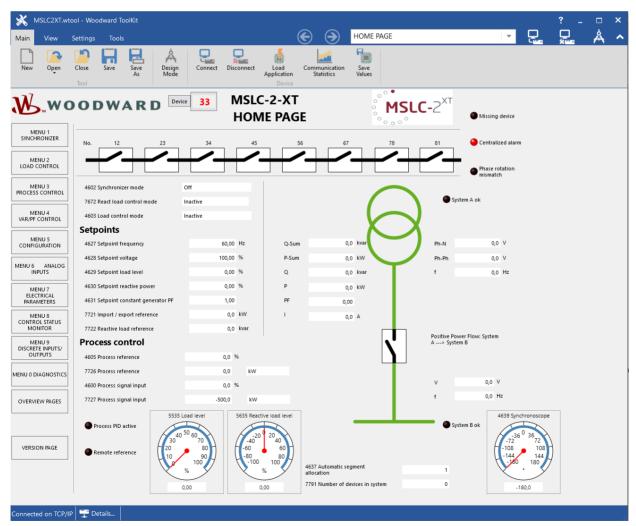


Figure 3-5: ToolKit - home page (MSLC-2 configured as utility breaker control)

Page 64/253 © Woodward

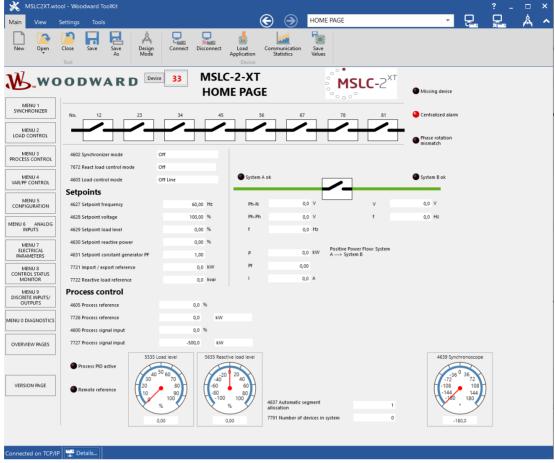


Figure 3-6: ToolKit - home page (MSLC-2 configured as tie-breaker control)

General

ID	Parameter	CL	Setting range	Format	Description
4602	Synchronizer mode	-	Off / Check / Permissive / Run / Close Timer/ Sync Timer / Synchronized / Auto-Off / Manual	-	Display of the different Synchronizer modes: Off: The synchronizer is not active. Check: The synchronizer runs in check mode. Permissive: The synchronizer runs in permissive mode. Run: The synchronizer is full active. Close Timer: This is the CB close command. Sync Timer: The synchronizer is stopped, because of a sync time-out. Synchronized: The CB is closed. Auto-Off: The synchronizer is stopped, because of an unsuccessful closure of the CB. (Resync is disabled). Manual: manual synchronization
7672	Reactive load control mode	-	Off / Inactive / Voltage Control / VAR Control / Power Factor Control / Const Gen PF Control /	-	Display of the different Reactive load control modes: Off: The reactive load control mode is disabled. Inactive: The reactive load control is not active. Voltage Control: The voltage control is active. VAR Control: The reactive load control with kvar reference is active. Power Factor Control: Power factor control is active. Const Gen PF Control: The reactive load control with a constant power factor reference is active.
4603	Load control mode	-	Off Line / Inactive / Base Load / Base Load Lower / Base Load Raise / Base Load Re- mote /	-	Display of the different Load control modes: Off Line: The load control mode is disabled. Inactive: The load control mode is inactive. Base Load: The Load control is in base load. Base Load Lower: A base load lower command is active. Base Load Raise: A base load raise command is active. Base Load Remote: The load reference is controlled by an analog remote input. Process Control: The process control is full active

© Woodward Page 65/253

ID	Parameter	CL	Setting range	Format	Description
			Process Control / Process Lower / Process Raise / Process Remote / Process Ramp / Import Export Control / Import Export Ramp / Import Export Remote / Imp Exp Lower / Imp Exp Raise / Utility Unload		Process Lower: A process reference lower command is active. Process Raise: A process reference raise command is active. Process Remote: The process reference is controlled by an analog remote input Process Ramp: The generators are ramped into process control Import Export Control: The Import Export control is active. Import Export Ramp: The generators are being ramped into Im / Ex control Import Export Remote: The Import Export reference is controlled by an analog remote input Imp Exp Lower: An Import Export lower command is active. Imp Exp Raise: An Import Export raise command is active. Utility Unload: The utility or tie-breaker is being unloaded.

Table 3-1: Parameter – homepage - General

Setpoints

ID	Parameter	CL	Setting range	Format	Description
4627	Setpoint frequency	-	Info	0.00 Hz	The field indicates the current Setpoint Frequency in Hz.
4628	Setpoint voltage	-	Info	0.00%	The field indicates the current Setpoint Voltage in percentage.
4629	Setpoint load level	-	Info	0.00%	Indicates the load level setpoint in percentage.
4630	Setpoint re- active power	1	Info	0.00%	Indicates the reactive load level setpoint in percentage.
4631	Setpoint constant generator PF	1	Info	0.00	The field indicates the constant generator power factor setpoint sent to the DSLC-2. NOTE: This field only indicates values if "VAR PF control mode" (parameter 7558) is configured to "Constant Generator PF".
7721	Import / export reference		Info	0.0 kW	The field indicates the current import / export setpoint for the MSLC-2 in kW.
7722	Reactive load reference	-	Info	0.0 kvar	The field indicates the current reactive load setpoint for the MSLC-2 in kvar.

Table 3-2: Parameter – homepage - Setpoints

Process control

ID	Parameter	CL	Setting range	Format	Description
4605	Process reference	-	Info	0.0%	The field indicates the current <i>Process reference</i> value of the MSLC-2 process control in percentage.
7726	Process reference	-	Info	0.0 kW	The field indicates the current <i>Process reference</i> value of the MSLC-2 process control in engineering units.
4600	Process signal input	-	Info	0.0%	The field indicates the real <i>Process signal input</i> value of the MSLC-2 process control in percentage.
7727	Process signal input	1	Info	0.0 kW	The field indicates the real <i>Process signal input</i> value of the MSLC-2 process control in engineering units.
5535	Load level		Info	0.00%	The gage indicates the load setpoint going to the DSLC-2.
5635	Reactive load level		Info	0.00%	The gage indicates the reactive load setpoint going to the DSLC-2.
4639	Synchrono- scope	-	Info	0°	The gage illustrates a <i>Synchronoscope</i> for the relation system A voltage to system B voltage in degrees.
4637	Automatic segment allocation	-	Info	0	The field indicates the segment number for this unit.

Table 3-3: Parameter – homepage – Process control

Page 66/253 © Woodward

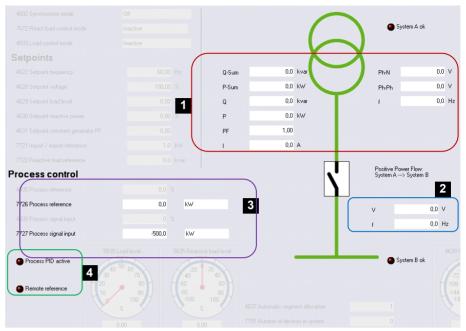
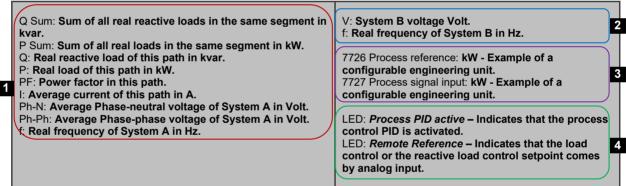



Figure 3-7: ToolKit - home page - MSLC-2 configured as utility breaker control

If the electrical diagram is shown in "Red" the electrical bar is live. Respectively an electrical diagram shown in "Green" means a dead bar. *1

¹ The parameter *Dead bus detection max. volt.* (parameter 5820) defines the dead bus condition.

© Woodward Page 67/253

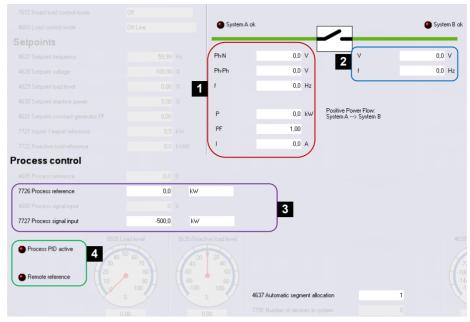
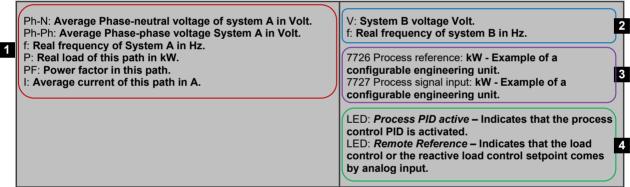



Figure 3-8: ToolKit - home page - MSLC-2 configured as tie-breaker control

If the electrical diagram is shown in "Red" the electrical bar is live. Respectively an electrical diagram shown in "Green" means a dead bar. *1

¹ The parameter *Dead bus detection max. volt.* (parameter 5820) defines the dead bus condition.

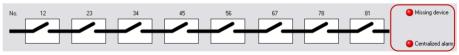


Figure 3-9: ToolKit - home page - segments

This figure indicates which segments in the DSLC-2 / MSLC-2 system are interconnected.

LED: Missing device – Indicates that the configured number of connected members (DSLC-2 and MSLC-2) is not recognized on the network.

LED: Centralized alarm – Any configured alarm is active.

Page 68/253 © Woodward

Menu 1 - Synchronizer

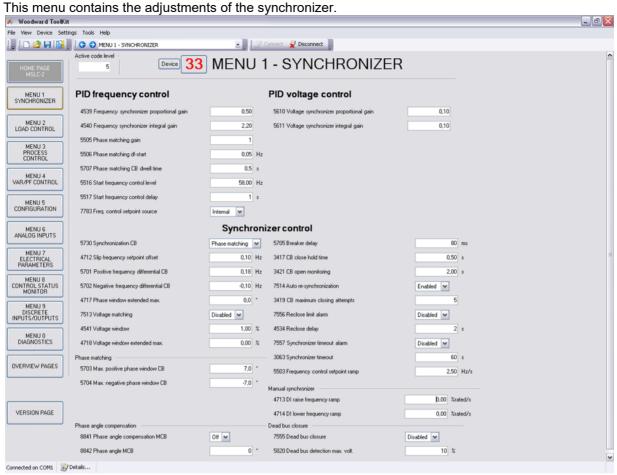


Figure 3-10: ToolKit – synchronizer

PID Frequency Control

ID	Parameter	CL	Setting range	Default	Description
4539	Frequency synchronizer proportional gain	2	0.01 to 100.00	0.80	Frequency sync gain determines how fast the synchronizer responds to an error in speed or phase. Adjust gain to provide stable control during synchronizing. Lower value to slow response.
4540	Frequency synchronizer integral gain	2	0.00 to 20.00	0.50	Frequency sync integral gain compensates for delay in the synchronizer control loop. Prevents low frequency hunting and damping (overshoot or undershoot). Lower value to slow response.
5505	Phase matching gain	2	1 to 99	5	The <i>Phase matching gain</i> increases or decreases the influence of the phase angle deviation to the frequency control. Prevents frequency hunting and damping (overshoot or undershoot) when the synchronizer is enabled with phase matching function.
5506	Phase matching df-start	2	0.02 to 0.25 Hz	0.05 Hz	Phase matching is started if the frequency difference between the systems to be synchronized is below the configured value.
5707	Phase matching CB dwell time	2	0 to 60.0 s	0.5 s	Dwell Time: This is the minimum time that the system A voltage, frequency and phase angle must be within the configured limits before the breaker will be closed. Set to lower time for quicker breaker closure commands.
5516	Start fre- quency con- trol level	1	0.00 to 70.00 Hz	55.00 Hz	The frequency controller is activated when the monitored system B frequency has exceeded the value configured in this parameter. This prevents the MSLC-2 from attempting to control the frequency while the engine is completing its start sequence.

© Woodward Page 69/253

ID	Parameter	CL	Setting range	Default	Description
5517	Start fre- quency con- trol delay	1	0 to 999 s	1 s	The frequency controller is enabled after the configured time for this parameter expires.
7783	Freq. Control setpoint source		Internal / Interface	Internal	This setting determines from which source the Frequency control setpoint comes: Internal: The setpoint parameter 1750 System rated frequency is valid. Interface: The setpoint comes via RS-485 Modbus or TCP/IP Modbus Interface with parameter 7641.

Table 3-4: Parameter – synchronizer – PID frequency control

PID Voltage Control

ID	Parameter	CL	Setting range	Default	Description
5610	Voltage synchronizer proportional gain	2	0.01 to 100.00	1.00	Voltage sync gain determines how fast the synchronizer responds to a voltage deviation. Adjust gain to provide stable control during synchronizing. Lower value to slow response.
5611	Voltage synchronizer integral gain	2	0.01 to 100.00	0.50	Voltage sync integral gain compensates for delay in the synchronizer voltage control loop. Prevents low voltage hunting and damping (overshoot or undershoot) when the synchronizer is enabled. Lower value to slow response.

Table 3-5: Parameter – synchronizer – PID voltage control

Synchronizer Control

ID	Parameter	CL	Setting range	Default	Description
5730	Synchronization CB	2	Slip frequency./. Phase matching	Slip frequency	Slip frequency: The frequency controller adjusts the frequency in a way, that the frequency of the variable system is marginal greater than the fixed system. When the synchronizing conditions are reached, a close command will be issued. The slipping frequency depends on the setting of Slip frequency setpoint offset (parameter 5502). Phase matching: The frequency controller adjusts the phase angle of the system B to that of the system A. NOTE: In the Permissive mode, phase matching is internally switched.
4712	Slip frequency setpoint	2	-0.50 to 0.50 Hz	0.10 Hz	This value is the offset for the synchronization to the variable system to the fixed system. With this offset, the unit synchronizes with a positive or negative slip.
	offset				Example: If this parameter is configured to 0.10 Hz and the busbar/mains frequency is 60.00 Hz, the synchronization setpoint is 60.10 Hz. If this parameter is configured to -0.10 Hz and the busbar/mains frequency is 60.00 Hz, the synchronization setpoint is 59.90 Hz.
5701	Positive frequency differential CB	2	0.02 to 0.49 Hz	0.18 Hz	The prerequisite for a close command being issued for the CB is that the differential frequency is below the configured differential frequency. This value specifies the upper frequency (positive value corresponds to positive slip > system B frequency is higher than system A frequency).
5702	Negative frequency differential CB	2	-0.49 to 0.00 Hz	-0.10 Hz	The prerequisite for a close command being issued for the CB is that the differential frequency is above the configured differential frequency. This value specifies the lower frequency limit (negative value corresponds to negative slip > system B frequency is less than system A frequency).
4717	Phase win- dow ex- tended maxi- mum	2	0.0 to 60.0 °	10.0°	When closing the last breaker in a ring structure, the phase window for the synchronizer is extended by this value

Page 70/253 © Woodward

ID	Parameter	CL	Setting range	Default	Description
7513	Voltage matching	2	Disabled / Enabled	Enabled	Enables or disables the synchronizer voltage matching function. Independent on this setting the voltage control is still executed but the synchronizer does not care about the voltage matching.
4541	Voltage window	2	0.50 to 10.00%	0.50%	The maximum permissible voltage differential for closing the breaker is configured here. If the difference between system A and system B voltage does not exceed the value configured here and the system A/B voltages are within the according operating voltage windows, the "Command: Breaker Close" may be issued.
					NOTE: When Voltage matching (parameter 7513) is "Disabled", the voltage window is set to the maximum value of 10%.
4718	Voltage win- dow ex- tended max.	2	0.50 to 20.00%	10.0%	When closing the last breaker in a ring structure, the voltage window for the synchronizer is extended by this value NOTE: In Menu 5, the Upper and Lower Voltage limit must be adapted (Parameter 5800 and 5801)
5705	Breaker delay	2	40 to 300 ms	80 ms	The inherent closing time of the CB corresponds to the lead-time of the close command. The close command will be issued independent of the differential frequency at the entered time before the synchronous point.
3417	CB close hold time	2	0.10 to 1.0 s	0.50 s	The time of the pulse output may be adjusted to the breaker being closed. NOTE: Higher settings than the default value need attention in case of black busbar closing! It must be ensured that no other MSLC/DSLC tries to close to the dead busbar during this time is running.
3421	CB open monitoring	2	0.10 to 5.00 s	2.00 s	If the "Reply: Breaker Open" is not detected as energized once this timer expires, a "CB fail to open" alarm is issued. This timer initiates as soon as the "Open breaker" sequence begins.
7514	Auto resynchroni- zation	2	Disabled / Ena- bled	Enabled	Switch for automatic GCB close attempts. Disabled: The device executes one close attempt, no automatic retry. Synchronizer mode parameter 4602 displays "auto-off" at the home page. For a new retry RUN order must be cycled. Enabled: The device automatically retries closing CB. If the Reclose limit alarm parameter 7556 is enabled, and the number of CB maximum close attempts parameter 3419 is expired the automatic retries will be stopped. NOTE: As long as the device is executing retries due to dead busbar closure the other controls in the system are blocked in dead busbar closure.
3419	CB maximum closing attempts	2	1 to 10	5	The maximum number of breaker closing attempts. NOTE: Not valid in the Permissive mode. Close attempt counter is reset after new RUN order or if GCB close time expired 5 s.
4534	Reclose delay	2	1 to 1000 s	2 s	The time between attempts to close the circuit breaker.
7556	Reclose limit alarm	2	Disabled / Ena- bled	Disabled	Switch for an alarm to be generated when reaching the maximum number of (automatic) close attempts. Disabled: Automatic re-synchronization (reclose) is not monitored. No alarm is caused to stop close attempts. Enabled: Reclose attempts are counted and compared with CB maximum closing attempts parameter 3419. If maximum is reached, the alarm stops further close attempts. NOTE: Not valid in the Permissive mode.
7557	Synchronizer timeout alarm	2	Disabled / Ena- bled	Disabled	This setting enables or disables the alarm generated by exceeding the synch timeout interval without achieving synchronization. NOTE: Not valid in the Permissive mode.
3063	Synchronizer timeout	2	3 to 999 s	60 s	This is the interval over which the synchronizer will attempt to achieve synchronization. The interval begins when system A voltage is in operating range and the run mode is activated. Failure to get a "CB Aux" contact closure within the specified time will result in a synch timeout alarm. The synchronizer must be set to "Off" mode to clear the interval timer and alarm.

© Woodward Page 71/253

ID	Parameter	CL	Setting range	Default	Description			
5503	Freq. control setpoint ramp	2	0.10 to 60.00 Hz/s	2.50 Hz/s	The slope of the ramp is used to alter the rate at which the controller modifies the setpoint value. The greater the value, the faster the change.			
Phase	Phase matching							
5703	Max. positive phase window CB	2	0.0 to 60.0 °	5.0 °	The prerequisite for a close command being issued for the CB is that the leading phase angle between system B and system A is below the configured maximum permissible angle.			
5704	Max. nega- tive phase window CB	2	-60.0 to 0.0 °	-5.0 °	The prerequisite for a close command being issued for the CB is that the lagging phase angle between system B and system A is above the configured minimum permissible angle.			
Manua	l synchronizer							
4713	DI raise frequency ramp	2	0.01 to 100,00% rated/s	0,04% rated/s	Digital Input: Raise frequency ramp as percentage rated delta frequency per second			
4714	DI lower frequency ramp	2	0.01 to 100,00% rated/s	0,04% rated/s	Digital Input: Lower frequency ramp as percentage rated delta frequency per second			
Phase	angle compensa	ation		•				
8841	Phase angle compensa- tion MCB	2	On / Off	Off	The phase angle between busbar voltage and mains voltage can be compensated according to an installed power transformer between busbar and mains. On: The compensation is active. The phase will be compensated according the value configured in parameter 8842 config. Off: The compensation is inactive. The phase angle is directly taken from the measurement. Notes WARNING: Ensure the following parameters are configured correctly to prevent erroneous synchronization settings. Incorrect wiring of the system cannot be compensated for with this parameter! Please check during initial commissioning the phase angle and the synchronization with a zero voltmeter. Recommendation: For safety reasons, please mark the MSLC2 with a label showing the configured phase angle compensation. Refer to the configured phase angle compensation.ase on page 217 for details.			
8842	Phase angle MCB	2	-180 to 180°	0°	The phase angle compensation corrects the degree between busbar voltage and mains voltage. The configured degree is added to the real measured phase angle.			
Dead b	ous closure							
7555	Dead bus closure	2	Disabled / Ena- bled	Enabled	Enables or disables the synchronizer's automatic deadbus detection and breaker closure functions. When enabled, the synchronizer will insure a breaker closure signal when a dead-bus is detected. (This incorporates the dead busbar closure negotiation to potential other DSLC-2 or MSLC-2 devices) NOTE: In Menu 1 you find more settings related to the dead busbar closure.			
5820	Deadbus detection max. volt.	2	0 to 30%	10%	Adjustable voltage in percentage of system A or B rated voltage for deadbus detection.			

Table 3-6: Parameter – synchronizer – synchronizer control

CAUTION

Ensure the previous parameters are configured correctly to prevent erroneous synchronization settings. Incorrect wiring of the system cannot be compensated for with these parameters!

Page 72/253 © Woodward

Menu 2 - Load Control

This menu contains the adjustments for load control.

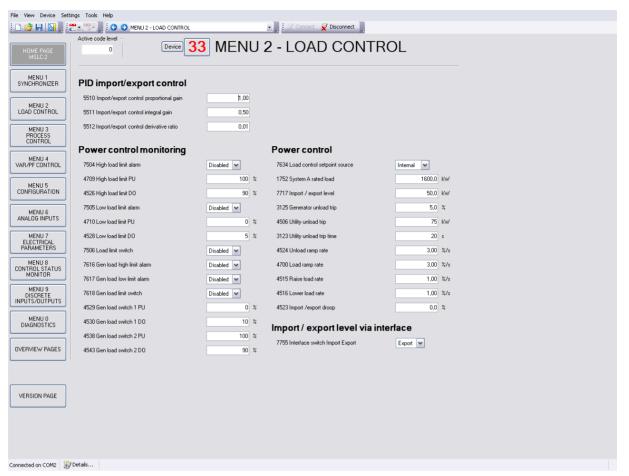
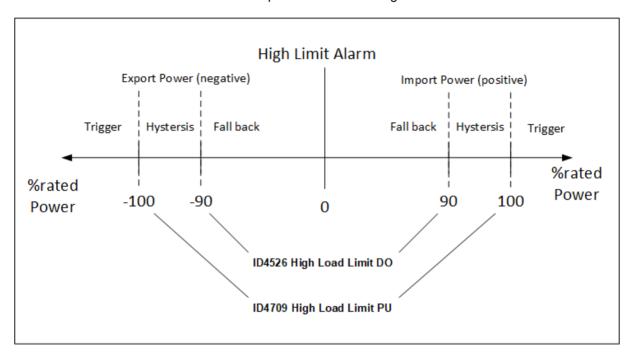


Figure 3-11: ToolKit - load control

PID Import/Export Control

ID	Parameter	CL	Setting range	Default	Description
5510	Import/ export control proportional gain	2	0.01 to 100.00	1.00	Import/export control proportional gain determines how fast the load control responds to an import/export load error. Gain is set to provide stable control. Lower the value for slower response.
5511	Import/ export control inte- gral gain	2	0.01 to 100.00	0.50	Import/export control integral gain compensates for lags in the load control loop. It prevents slow hunting and controls damping (overshoot or undershoot) after a load disturbance. Lower the value for slower response.
5512	Import/ export control derivative ratio	2	0.01 to 100.00	0.01	Import/export control derivative ratio adjusts the rate of change in the load command during a load transient.


Table 3-7: Parameter – load control – PID import/export control

© Woodward Page 73/253

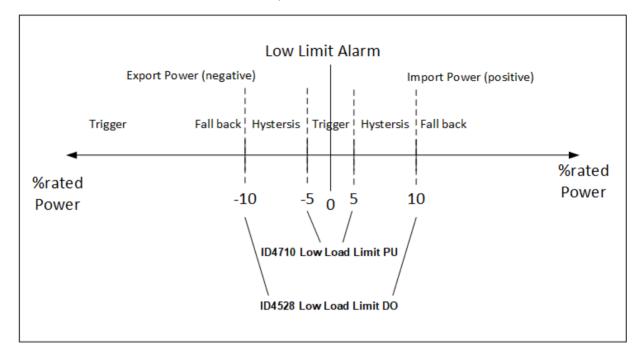
Power Control Monitoring

High Load Monitoring

This monitoring function observes if the system A power exceeds either an export power or an import power. In other words an alarm can be raised if either an export or import load is higher than a configurable limit. So the monitor checks if in both power directions a high limit is exceeded.

ID	Parameter	CL	Setting range	Default	Description
7504	High load limit alarm	2	Disabled / Ena- bled	Disabled	The <i>High load limit alarm</i> enables the high load limit alarm output caused by the high load monitor. Additionally if the Load limit switch ID7506 is enabled the relay 3 (terminal 44) is energized.
4709	High load limit PU	2	-150 to 150%	100%	The High load limit PU (pickup) is the import/export load level where (if enabled) the "High Limit" relay is energized and the high limit alarm is activated. The percentage value relates to system A rated load (parameter 1752).
4526	High load limit DO	2	-150 to 150%	90%	The High load limit DO (dropout) is the import/export load level where (if enabled) the "High Limit" relay is de-energized and the high limit alarm is deactivated. The percentage value relates to system A rated load (parameter 1752).

Table 3-8: Parameter – load control – power control monitoring


NOTE

A negative percentage value of parameter ID4709 High Load Limit PU and ID4526 High Load Limit DO has no influence in the functionality.

Page 74/253 © Woodward

Low Load Monitoring

This monitoring function observes if the system A power fall below either an export power or an import power. In other words an alarm can be raised if either an export or import load is lower than a configurable limit. So the monitor checks if for both power directions a low limit is underrun.

ID	Parameter	CL	Setting range	Default	Description
7505	Low load limit alarm	2	Disabled / Ena- bled	Disabled	The Low load limit alarm enables the low load limit alarm output caused by the low load monitor. Additionally if the Load limit switch ID7506 is enabled the relay 4 (terminal 45) is energized.
4710	Low load limit PU	2	0 to 100%	0%	The Low load limit PU (pickup) is the import/export load level where (if enabled) the "Low Limit" relay is energized and the low limit alarm is activated. The percentage value relates to system A rated load (parameter 1752).
4528	Low load limit DO	2	2 to 100%	5%	The Low load limit DO (dropout) is the import/export load level where (if enabled) the "Low Limit" relay is deenergized and the low limit alarm is deactivated. The percentage value relates to system A rated load (parameter 1752).

Table 3-8: Parameter – load control – power control monitoring

Load Limit Switch

The load limit switch function can transfer the expired High and Low limits trips to the according high and low limit alarms and relays.

ID	Parameter	CL	Setting range	Default	Description
7506	Load limit switch	2	Disabled / Ena- bled	Disabled	Load limit switch specifies if the "High Limit" and "Low Limit" trigger shall activate the high and low limit relays.

Table 3-8: Parameter – load control – power control monitoring

© Woodward Page 75/253

Gen Load Monitoring

Generator Load High Limit Alarm

With this alarm function a high limit alarm is issued if not enough generator power in the own segment is available. The Gen load high limit alarm is triggered if the setpoint sent to the generators reaches 100%. Additionally if the Gen load limit switch ID7618 is enabled the relay 3 "High Limit" (terminal 44) is energized.

Generator Load Low Limit Alarm

With this alarm function a low limit alarm is issued if no generator power in the own segment is required. The Gen load low limit alarm is triggered if the setpoint sent to the generators reaches 0% level. Additionally if the Gen load limit switch ID7618 is enabled the relay 4 "Low Limit" (terminal 45) is energized.

ID	Parameter	CL	Setting range	Default	Description
7616	Gen load high limit alarm	2	Disabled / Ena- bled	Disabled	Generator load high limit alarm enables the generator high limit alarm and activates (if enabled) the "High Limit" relay (Terminal 44). The generator high limit alarm is activated when the MSLC-2 is required to output a system load of 100% to the DSLC-2 controls in order to meet its reference.
7617	Gen load low limit alarm	2	Disabled / Ena- bled	Disabled	Generator load low limit alarm enables the generator low limit alarm and activates (if enabled) the "Low Limit" relay (Terminal 45). The generator low limit alarm is activated when the MSLC-2 is required to output a system load of 0% to the DSLC-2 controls in order to meet its reference.

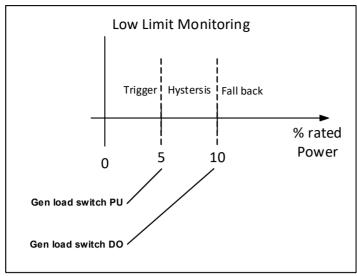
Table 3-8: Parameter – load control – power control monitoring

Generator Load Limit Switch

The Generator load limit switch function puts the generator load switch 1 flag on relay 11 and the generator load switch 2 flag on relay 12. Refer to Generator Load Switch 1 + 2 for more details.

ID	Parameter	CL	Setting range	Default	Description
7618	Gen load limit switch	2	Disabled / Ena- bled	Disabled	Generator load limit switch specifies if the high and low limit alarms will activate the "Load Switch 1" or "Load Switch 2" relay when the system load setpoint reaches 100% or respectively 0%.

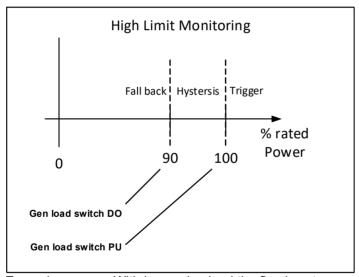
Table 3-8: Parameter – load control – power control monitoring


Generator Load Switch 1 + 2

The generator load switches 1 + 2 monitors the DSLC-2 system load in the own segment with a limit and a histeresis. According to the configuration of "Gen load switch PU" and "Gen load switch DO" the value is monitored on a lower limit or an higher limit. Each monitor sets a tripping flag.

Low Limit Monitoring

If the pickup (PU) entry is lower or equal as the dropout (DO) entry a flag is set if the system load underruns the PU limit. If then the system load is equal or overruns the DO entry the flag will be reset.


Page 76/253 © Woodward

Example underrun: With decreasing load the flag is set.

High Limit Monitoring

If the pickup (PU) entry is higher or equal as the dropout (DO) entry a flag is set if the system load overruns the PU limit. If then the system load is equal or underruns the DO entry the flag will be reset.

Example overrun: With increasing load the flag is set.

ID	Parameter	CL	Setting range	Default	Description
4529	Gen Load switch 1 PU	2	0 to 100%	0%	Generator Load switch 1 PU (pickup) is the system load level where the "Load Switch1" relay is energized.
4530	Gen Load switch 1 DO	2	0 to 100%	10%	Generator Load switch 1 DO (dropout) is the system load level where the "Load Switch1" relay is de-energized.
4538	Gen Load switch 2 PU	2	0 to 100%	100%	Generator Load switch 2 PU (pickup) is the system load level where the "Load Switch2" relay is energized.
4543	Gen Load switch 2 DO	2	0 to 100%	90%	Generator Load switch 2 DO (dropout) is the system load level where the "Load Switch2" relay is de-energized.

Table 3-8: Parameter – load control – power control monitoring

© Woodward Page 77/253

Power Control

ID	Parameter	CL	Setting range	Default	Description
7634	Load control	2	Internal /	Internal	This setting determines from which source the load reference for
7034	setpoint source	۷	Interface	internal	the import / export power control comes:
					Internal: The setpoint parameter 7717 is valid or the analog input. The analog remote load reference input is valid, when DI "Load Raise" and DI "Load Lower" are closed. Interface: The setpoint comes via RS-485 Modbus or TCP/IP Modbus Interface.
1752	System A rated load	2	1 to 999999.9 kW	250.0 kW	This value specifies a rated power at the interchange point or over the tie-breaker. This real power rating is the reference for several functions, like power control monitoring or ramp scaling.
					NOTE: During active power control, the System A rated load value (parameter 1752) may not be changed. The power plant has to be shut down and the MCB has to be opened.
7717	Import / export level	0	-999999.9 to 999999.9 kW	20.0 kW	This value is the load setpoint for the import export control. The value gets active when the load control setpoint source (parameter 7634) is configured for "Internal".
					Note: This value is bypassed in the moment of using the raise / lower setpoint function by DI. The value is triggered, if the "CB Aux" goes open and close or another load setting is configured.
3125	Generator unload trip	2	0.5 to 99.9%	3.0%	Generator unload trip is the percentage limit of the system load level sent to the DSLC-2s, which must be reached before issuing the local/gen bus breaker open command.
					NOTE: The local/gen bus unload mode will be activated, if the "Load Lower" DI is given continuously while in the base load control mode.
4506	Utility unload trip	2	0 to 30000 kW	5 kW	Utility unload trip is the load level that the MSLC-2 must be below before issuing the utility breaker open command during a utility unload.
3123	Utility unload trip time	2	3 to 999 s	60 s	If the monitored system A power does not fall below the limit configured in parameter 3125 before the time configured here expires, a "Breaker open" command will be issued together with an alarm.
4524	Unload ramp rate	2	0.01 to 100.00%/s	3.00%/s	Unload ramp rate is the rate at which the control ramps between modes in%/sec. Remember, this refers to unloading the utility, which is then loading the generator set.
4700	Load ramp rate	2	0.01 to 100.00%/s	3.00%/s	Load ramp rate is the rate at which the control ramps between modes in%/sec. Remember; this refers to loading the utility, which is then unloading the generator set.
4515	Raise load rate	2	0.01 to 100.00%ss	1.00%/s	This is the rate the internal load reference increases, when the discrete input raise load command is activated.
45.5				1.05377	NOTE: Modbus reference changes will follow this value.
4516	Lower load rate	2	0.01 to 100.00%s	1.00%/s	This is the rate the internal load reference decreases, when the discrete input lower load command is activated.
					NOTE: Modbus reference changes will follow this value.
4523	Import / ex- port droop	2	0.0 to 100.0%	0.0%	Import / export droop is the droop setting for the import/export controller. The effect of droop is to make the control more resistant to variations from the import/export reference. This droop has the effect of causing the target import/export level to go towards a zero power transfer situation with increasing load. When set to the default value of zero the import/export control has no droop.

Table 3-9: Parameter – load control – power control

Page 78/253 © Woodward

Manual 37947

Import / Export Level via Interface

ID	Parameter	CL	Setting range	Default	Description
7755	Interface switch import export	2	Export / Import	Export	This setting defines the setpoint argument for the power control setpoint transferred by interface. This setting gets active when the <i>Load control setpoint source</i> (parameter 7634) is configured to "Interface".
					Export: The value send by interface is an export kW setpoint. Import: The value send by interface is an import kW setpoint.

Table 3-10: Parameter – load control – import/export level via interface

© Woodward Page 79/253

Menu 3 - Process Control

This menu contains the adjustments for process control.

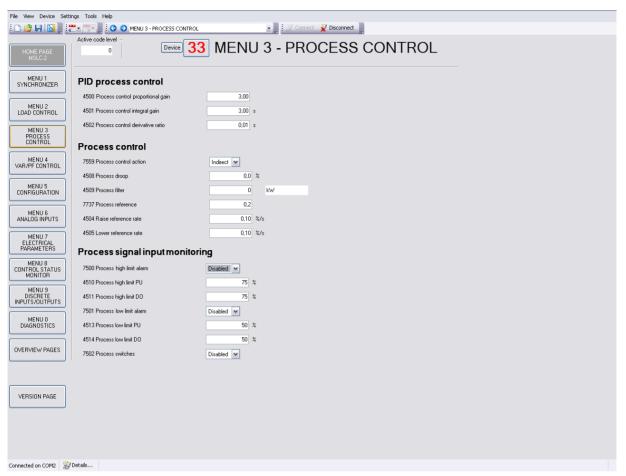


Figure 3-12: ToolKit - process control

PID Process Control

ID	Parameter	CL	Setting range	Default	Description
4500	Process control proportional gain	2	0.01 to 100.00	3.00	The <i>Process control proportional gain</i> determines how fast the process control responds to an error between the process variable and reference. The gain is set to provide stable control of the process. Lower the value to slow the response.
4501	Process control inte- gral gain	2	0.01 s to 100.00 s	3.00 s	The <i>Process control integral gain</i> compensates for delay in the process control loop. It prevents low frequency hunting and damping (overshoot or undershoot) when a process disturbance occurs. Lower the value to slow the response.
4502	Process control derivative ratio	2	0.01 to 100.00 s	0.01 s	The <i>Process control derivative ratio</i> adjusts the rate of change in speed bias output during a process level transient. Lower the value to slow the response.

Table 3-11: Parameter – process control – PID process control

Page 80/253 © Woodward

Process Control

ID	Parameter	CL	Setting range	Default	Description
7559	Process control action	′2	Direct / Indirect	Indirect	The <i>Process control action</i> specifies if the process variable is direct or indirect acting. Direct: If the process variable increases when generator load increases. Indirect: If the process variable decreases when generator load increases.
4508	Process droop	2	0.0 to 100.0%	0.0%	The <i>Process droop</i> is the load droop desired based on process level.
4509	Process filter	2	0 to 8	0	The <i>Process filter</i> adjusts the bandwidth of the filter on the process input. Higher frequency settings result in faster control response, but also more response to process noise.
7737	Process reference	0	-999999.9 to 999999.9	0.0	The <i>Process reference</i> is the internal reference for the process control. The process engineering units are determined by the selection and settings in Menu 6.1.
4504	Raise reference rate	2	0.01 to 20.00%/s	0.10%/s	The Raise reference rate is the rate at which the process reference is increased when the DI "Load Raise" command is activated.
4505	Lower reference rate	2	0.01 to 20.00%/s	0.10%/s	The Lower reference rate is the rate at which the process reference is decreased when the DI "Load Lower" command is activated.

Table 3-12: Parameter – process control – process control

Process Signal Input Monitoring

ID	Parameter	CL	Setting range	Default	Description
7500	Process high limit alarm	2	Disabled / Enabled	Disabled	The <i>Process high limit alarm</i> specifies if the high process limit alarm is activated.
4510	Process high limit PU	2	0.0 to 150.0%	75.0%	The <i>Process high limit PU</i> is the process input level where (if enabled) the "High Limit" relay output is energized and the high limit alarm is activated.
4511	Process high limit DO	2	0.0 to 150.0%	75.0%	The <i>Process high limit DO</i> is the process input level where (if enabled) the "High Limit" relay output is de-energized and the high limit alarm is deactivated.
7501	Process low limit alarm	2	Disabled / Enabled	Disabled	The <i>Process low limit alarm</i> specifies if the low process limit alarm is activated.
4513	Process low limit PU	2	0.0 to 150.0%	50.0%	The <i>Process low limit PU</i> is the process input level where (if enabled) the "Low Limit" relay output is energized and the low limit alarm is activated.
4514	Process low limit DO	2	0.0 to 150.0%	50.0%	The <i>Process low limit DO</i> is the process input level where (if enabled) the "Low Limit" relay output is de-energized and the low limit alarm is deactivated.
7502	Process switches	2	Disabled / Enabled	Disabled	The <i>Process switch</i> specifies if the process high and low limits will activate the "High Limit" and "Low Limit" relay outputs.

Table 3-13: Parameter – process control – process signal input monitoring

© Woodward Page 81/253

Menu 4 - Voltage/Var/PF Control

This menu contains the adjustments for reactive load control.

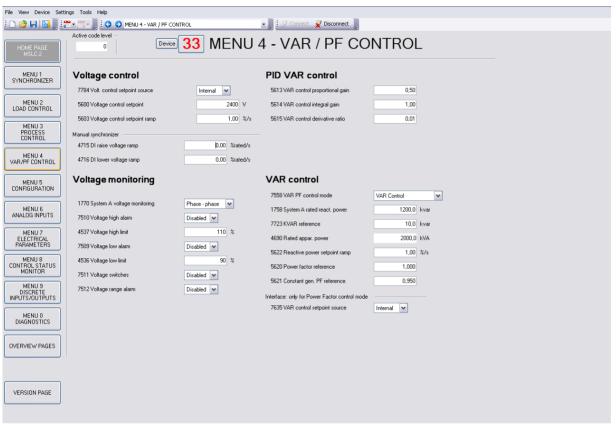


Figure 3-13: ToolKit - voltage/var/pf control

Voltage Control

ID	Parameter	CL	Setting range	Default	Description
7784	Voltage control setpoint source		Internal / Interface	Internal	This setting determines from which source the Voltage control set- point comes: Internal: The setpoint parameter 5600 Voltage control setpoint is valid. Interface: The setpoint comes via RS-485 Modbus or TCP/IP Modbus Interface with parameter 7780.
5600	Voltage control setpoint	1	50 to 650.000 V	480 V	This value is the reference for the voltage controller when performing isolated and/or no-load operations. Usually the voltage control setpoint is the same like the rated voltage setting. In some cases it could be desired to have another setpoint in isolation operation.
5603	Voltage control setpoint ramp	2	1.00 to 300.00%/s	5.00%/s	The different setpoint values are supplied to the controller via this ramp. The slope of the ramp is used to alter the rate at which the controller modifies the setpoint value. A greater value will create a faster change in the setpoint.
Manua	l synchronizer				
4715	DI raise voltage ramp	2	000.01 to 100.00%rated/s	000.05%r ated/s	Digital Input: Raise voltage ramp as percentage rated delta voltage per second
4716	DI lower voltage ramp	2	000.01 to 100.00%rated/s	000.05%r ated/s	Digital Input: Lower voltage ramp as percentage rated delta voltage per second

Table 3-14: Parameter – voltage/var/pf control – voltage control

Page 82/253 © Woodward

Voltage Monitoring

ID	Parameter	CL	Setting range	Default	Description
1770	System A voltage monitoring	2	Phase - phase / Phase - neutral	Phase - phase	This configuration determines the monitored voltage type. Phase – phase: Only the phase - phase voltages VL12, VL23 and VL31 are monitored. Phase – neutral: Only the phase - neutral voltages VL1N, VL2N and VL3N are monitored.
7510	Voltage high alarm	2	Disabled / Ena- bled	Disabled	The Voltage high alarm specifies if the high voltage limit alarm is activated.
4537	Voltage high limit	2	0 to 150%	110%	The <i>Voltage high limit</i> setting specifies the voltage high limit alarm trip point. The input is related to the rated voltage input configurable in Menu 5 (parameter 1766). (Hysteresis 2 %)
7509	Voltage low alarm	2	Disabled / Ena- bled	Disabled	The Voltage low alarm specifies if the low voltage limit alarm is activated.
4536	Voltage low limit	2	0 to 150%	90%	The <i>Voltage low limit</i> specifies the voltage low limit alarm trip point. The input is related to the rated voltage input configurable in Menu 5 (parameter 1766). (Hysteresis 2 %)
7511	Voltage switch	2	Disabled / Ena- bled	Enabled	The <i>Voltage switch</i> specifies if the voltage high and low limits will activate the "High Limit" and "Low Limit" relays.
7512	Voltage range alarm	2	Disabled / Ena- bled	Disabled	Enables or disables the voltage regulator bias output limit alarm. The alarm voltage range limit will be activated as soon as the value is outside the range 80-101 %.

Table 3-15: Parameter – voltage/var/pf control – voltage monitoring

PID VAR Control

ID	Parameter	CL	Setting range	Default	Description
5613	VAR control proportional gain	2	0.01 to 100.00	1.00	Var/PF proportional gain determines how fast the var/PF control responds to an error signal between kvar/PF reference and kvar/PF actual measurement. The gain is set to provide stable control of kvars or power factor. Lower value to slow response. PID var control loop is active: VAR PF control mode (parameter 7558) Var control PF control Utility MSLC-2 is operating in Import/export control Process control mode
5614	VAR control integral gain	2	0.01 to 100.00	0.50	Var/PF integral gain compensates for delay in the reactive power control loop. This prevents low frequency overshoot or undershoot when a change in reactive power occurs. Lower value to slow response. PID var control loop is active: VAR PF control mode (parameter 7558) Var control PF control Itility MSLC-2 is operating in Import/export control Process control mode
5615	VAR control derivative ratio	2	0.01 to 100.00	0.01	Var/PF derivative ratio adjusts the rate of change of the voltage bias output during a load transient. Lower value to slow response. PID var control loop is active: VAR PF control mode (parameter 7558) • Var control • PF control Utility MSLC-2 is operating in • Import/export control • Process control mode

Table 3-16: Parameter – voltage/var/pf control – PID VAR control

© Woodward Page 83/253

Var Control

ID	Parameter	CL	Setting range	Default	Description
	L				·
7558	VAR PF control mode	2	PF Control / VAR Control / Constant Gener- ator PF	VAR Control	PF Control: If the DI process control or DI import/export control is active, the control will maintain a constant PF across the utility tie (ID 5620). Otherwise the DSLC's are forced for a constant generator PF (ID 5621). VAR Control: If the DI process control or DI import/export control is active, the control will maintain a constant var load level across the utility tie (ID 7723). Otherwise the DSLC's are forced for a constant generator PF (ID 5621). Constant Generator PF: The control will always send a constant generator PF (ID 5621) to the DSLC-2.
1758	System A rated react. power	2	0.1 to 999999.9 kvar	190.0 kvar	This value specifies the system A reactive power rating, which is used as a reference figure for related functions. If unknown, set to 60% of the kVA or 80% of the kW rating, which is the kvar load at 0.8 lagging power factor.
7723	KVAR reference	2	-999999.9 to 999999.9 kvar	10.0 kvar	This is the setpoint for the reactive load control when the VAR PF control mode is configured for "VAR control".
4690	Rated appar. power	-	Info	kVA	This field indicates the internal calculated appearance power which is calculated out of the kW and kvar rating.
5622	Reactive power setpoint ramp	2	0.01 to 100.00%/s	10.00%/s	When issuing of different setpoints or during ramp up and ramp down of the reactive load. The ramp setting is related to rated reactive power (parameter 1758).
5620	Power factor reference	1	- 0.5 to 0.5* Displayed text in case of wrong input: "min -0.999, max 1.000"	1.000	This is the setpoint for the reactive load control when the VAR PF control mode (parameter 7558) is configured for "PF control". The designations "-" and "+" stand for: Inductive/lagging (+) - generator supplying vars Capacitive/leading (-) - generator absorbing vars *NOTE: ToolKit works fine but input error messaging has no adequate standard text available.
5621	Constant gen. PF reference	1	-0.999 to 1.000	0.950	This is the constant reference the MSLC-2 sends to the DSLC-2 controls (the reference level at which to maintain each DSLC-2 controls generator) when in constant generator power factor control mode. In this mode the DSLC-2 control will maintain a constant generator PF level regardless of the amount of vars being absorbed / generated across the utility tie. This setpoint is active when the VAR PF control mode (parameter 7558) is configured on "Constant Generator PF". NOTE: The designations "+" stands for generate inductive/lagging reactive power with the generator. The designations "-" stands for absorb capacitive/leading reactive power with the generator. NOTE: It is recommended that the constant generator power factor control mode be used in applications where the total generator
1	Lufan Daw		4		kvar capacity is less than the kvar load of the system.
	-		ctor control mode		l -
7635	VAR control setpoint source	2	Internal / Interface	Internal	This parameter determines the reactive load control setpoint source: Internal The setpoint comes from:
					 KVAR reference (parameter 7723) at the interchange point when VAR PF control mode (parameter 7558) is configured on "VAR control". Power factor reference (parameter 5620) at the interchange point when VAR PF control mode (parameter 7558) is configured on "PF control". Power factor reference at the interchange point over analog input (parameter 7718) when VAR PF control mode (parameter 7558) is configured on "PF control" and the remote

Page 84/253 © Woodward

ID	Parameter	CL	Setting range	Default	Description
					function is activated. (DI "Voltage Raise" / "Voltage Lower" set). Interface The setpoint comes from the interface (via RS-485 Modbus or TCP/IP Modbus, Address 7640). The setpoint is a power factor setpoint. Therefore the VAR PF control mode (parameter 7558) has to be configured to one of the PF settings. • "PF Control": The Modbus parameter 7640 will be the power factor reference value at the interchange point. • "Constant Generator PF": The Modbus parameter 7640 will be the power factor reference for a constant power
					factor reference sent to the DSLC-2s.

Table 3-17: Parameter – voltage/var/pf control – VAR control

© Woodward Page 85/253

Menu 5 - Configuration

This menu contains system rated frequency, generator rated voltage, PT and CT settings, with operating range and device number for the configuration of the MSLC-2.

Figure 3-14: ToolKit – configuration

General

NOTE

Beside the System A 3-phase or 1-phase measurement the MSLC-2 provides a busbar 1-phase measurements and an auxiliary busbar 3-phase measurement. The busbar 1-phase measurement at the terminals 37-40 is obligatory and has to be connected in each application. The auxiliary busbar 3-phase AC measurement at the terminals 21-28 can additionally be used. When both measurements are used the busbar voltage has to be connected to both inputs. With the parallel use of the auxiliary busbar measurement, the MSLC-2 can determine correct voltages on all 3 phases and becomes a part of the operating range- and the phase rotation monitoring.

NOTE

Connection plausibility is checked: If the Busbar is not connected but Auxiliary Busbar is connected the "Busbar mismatch" Alarm ID 7770 occurs. This alarm is triggered when either the L1-L2 phase-phase voltage of the Aux busbar or the original busbar is lower or higher than the operation ranges (but higher than dead bus closure limit).

Page 86/253 © Woodward

Dependent on the configuration "auxiliary busbar measurement" it will be checked when

Auxiliary system available = "No"

then the auxiliary busbar has no influence and therefore an alarm is never triggered

Auxiliary system available = "Yes" then the auxiliary busbar with L1-L2 and the original busbar L1-L2 is checked if lower or higher than operating ranges
The dead busbar closure shall be blocked, when this alarm occurs.

ID	Parameter	CL	Setting range	Default	Description
1750	System rated frequency	2	50 / 60 Hz	60 Hz	The rated frequency of the system is used as a reference figure for all frequency related functions. This is used for operating range limits and frequency monitoring.
1766	System A rated voltage	2	50 to 650000 V	480 V	This voltage is always entered as a "Phase - phase" value. The rated system A potential transformer primary voltage is used as a reference figure for all system A voltage related functions, which use a percentage value, like operating range limits and voltage monitoring. NOTE: This value refers to the rated voltage of the system A (system A voltage on data plate) and is the voltage measured on the potential transformer primary.
1754	System A rated current	2	1 to 32000 A	500 A	This value specifies the System A rated current.
1850	System A current input	2	L1 L2 L3 / Phase L1 / Phase L2 / Phase L3	L1 L2 L3	L1 L2 L3: All three phases are monitored. Measurement, display and protection are adjusted according to the rules for 3-phase measurement. Phase L {1/2/3}: Only one phase is monitored. Measurement, display and protection are adjusted according to the rules for single-phase measurement. Monitoring refers to the selected phase. NOTE: Please refer to the comments on measuring principles in the installation chapter. This parameter is only effective if System A voltage measuring (parameter 1851) is configured to "3Ph 4W", "3Ph 3W" or "3Ph 4W OD".
1851	System A voltage measuring	2	3Ph 4W / 3Ph 3W / 1Ph 2W / 3Ph 4W OD	3Ph 3W	3Ph 4W: Wye connected voltages System A voltage is connected using all 3 phases and a neutral. This measurement can be directly connected or through potential transformers (PTs). Voltage monitoring is configured in the "Voltage/VAR/PF Menu 4", parameter 1770. This setting determines if the MSLC-2 uses "Phase - phase" or "Phase - neutral" voltage for protection. 3Ph 3W: Delta connected voltages System A voltage is connected using all 3 phases. This measurement can be directly connected or through potential transformers (PTs). This configuration is used when: • The system A is connected to the load using 3-phase and neutral • The system A voltage is connected to the MSLC-2 using 3-wire, "Phase - phase" • The L2 phase is not grounded on the input of the MSLC-2 And when: • The system A is connected to the load using 3 phases and no neutral • The system A voltage is connected to the DSLC-2 using 3 wire, "Phase - phase" • The L2 phase can be grounded or left ungrounded 1Ph 2W: Wye or delta connected system System A is connected using L1 phase and neutral or L1 phase and L2. This selection should be used when the MSLC-2 will function only as a synchronizer, such as an MSLC-2 in the tie-breaker mode. 3Ph 4W OD: Delta connected voltages System A voltage is connected using all 3 phases without a neutral connection. This measurement can be directly connected or through potential transformers (PTs). This configuration is used when: • The system A is connected to the load using 3-phase and neutral

© Woodward Page 87/253

ID	Parameter	CL	Setting range	Default	Description
					The system A voltage is connected to the MSLC-2 using 3 wire, "Phase - phase" The L2 phase is grounded on the input of the MSLC-2 NOTE: Please refer to the comments on measuring principles in the installation chapter ("Voltage Measuring: System A" on page 30)
1781	System B rated voltage	2	50 to 650000 V	480 V	The system B potential transformer primary voltage is entered in this parameter. This value can be: • Phase - phase • Phase - neutral They dependent on the 1Ph 2W voltage input (parameter 1858) setting. The system B rated voltage is used as a reference figure for all system B voltage related functions. NOTE: This value refers to the rated voltage of system B and is the voltage measured on the potential transformer primary.
1858	1Ph2W voltage input	2	Phase – phase / Phase – neutral	Phase – phase	Phase – phase: The unit is configured for measuring phase-phase voltages, if 1Ph 2W measuring is selected. Phase – neutral: The unit is configured for measuring phase-neutral voltages, if 1Ph 2W measuring is selected. NOTE: When this parameter is configured wrong the synchronization phase angle system A <-> Bus would be wrong calculated.
1859	1Ph2W phase rotation	2	CW / CCW	CW	CW: A clockwise rotation field is considered for 1Ph 2W measuring. CCW: A counter-clockwise rotation field is considered for 1Ph 2W measuring.
1853	Aux system B voltage meas.	2	3Ph 4W / 3Ph 3W /	3Ph 3W	In case of a 3-phase measurement connection of auxiliary system B, the connection has to be defined. 3Ph 4W: Wye connected voltages Auxiliary system B voltage is connected using all 3 phases and neutral. This measurement can be directly connected or through potential transformers (PTs). Voltage monitoring is configured in the "Voltage/VAR/PF Control Menu 4", parameter 1770. This setting determines if the MSLC-2 uses the "Phase - phase" or "Phase - neutral" voltage measurement for protection. 3Ph 3W: Delta connected voltages Auxiliary system B voltage is connected using all 3 phases. This measurement can be directly connected or through potential transformers (PTs). Voltage monitoring is configured in the "Voltage/VAR/PF Control Menu 4", parameter 1770. This settings must be configured for "Phase - phase".
7649	Auxiliary system B available	2	No / Yes	No	No: The auxiliary system B measurement is not used. Yes: The auxiliary system B measurement is used and becomes a part of the operating range- and the phase rotation monitoring. The auxiliary system B measurement is displayed in Menu 7.

Table 3-18: Parameter – configuration

Transformer

ID	Parameter	CL	Setting range	Default	Description
1801	System A PT primary rated voltage	2	50 to 650000 V	480 V	The value is always entered as the "Phase - phase" measurement. Some System A applications may require the use of potential transformers to facilitate measuring the voltages produced by the system A. The rating of the primary side of the potential transformer must be entered into this parameter. If the application does not require potential transformers (i.e. the measured voltage is 690 V or less), then the measured voltage will be entered into this parameter.
1800	System A PT secondary rated voltage	2	50 to 480 V	120 V	The value is always entered as the "Phase - phase" measurement. Some System A applications may require the use of potential transformers to facilitate measuring the voltages produced by the system A. The rating of the secondary side of the potential

Page 88/253 © Woodward

Manual 37947

ID	Parameter	CL	Setting range	Default	Description
					transformer must be entered into this parameter. If the System A application does not require potential transformers (i.e. the generated voltage is 690 V or less), then the generated voltage will be entered into this parameter.
1806	System A CT primary rated current	2	1 to 32000 A/x	500 A/x	The input of the current transformer ratio is necessary for the indication and control of the actual monitored value. The current transformers ratio should be selected so that at least 60% of the secondary current rating can be measured when the monitored system is at 100% of operating capacity (i.e. at 100% of system capacity a 5 A CT should output 3 A). If the current transformers are sized so that the percentage of the output is lower, the loss of resolution may cause inaccuracies in the monitoring and control functions and affect the functionality of the control.
1804	System B PT primary rated voltage	2	50 to 650000 V	480 V	The value is always entered as the "Phase - phase" measurement. Some applications may require the use of potential transformers to facilitate measuring the voltages to be monitored. The rating of the primary side of the potential transformer must be entered into this parameter. If the application does not require potential transformers (i.e. the measured voltage is 690 V or less), then the measured voltage will be entered into this parameter.
1803	System B PT second- ary rated voltage	2	50 to 480 V	120 V	This voltage is always entered as a "Phase – phase" measurement. Some applications may require the use of potential transformers to facilitate measuring the system B voltages. The rating of the secondary side of the potential transformer must be entered into this parameter. If the application does not require potential transformers (i.e. the measured voltage is 690 V or less), then the measured voltage will be entered into this parameter.

Table 3-19: Parameter – configuration – transformer

© Woodward Page 89/253

Operating Ranges

NOTE

The operating ranges are settings, which are used for determining the generator is operating at the correct voltage and frequency. Drop out of the operating range is not monitored with an alarm. The operating ranges are valid for generator, busbar and auxiliary busbar measurement, if used. It is recommended to configure the operating limits within the monitoring limits.

NOTE

For monitoring the operating ranges respectively, the information can be read by interface or the Home page in ToolKit and is also displayed by the LEDs conditions.

ID	Parameter	CL	Setting range	Default	Description
5800	Upper voltage limit	2	100 to 150%	110%	The maximum permissible positive deviation of the voltage from the <i>System B rated voltage</i> (parameter 1768) is configured here. (Hysteresis 1 %)
5801	Lower voltage limit	2	50 to 100%	90%	The maximum permissible negative deviation of the voltage from the <i>System B rated voltage</i> (parameter 1768) is configured here. (Hysteresis 1 %)
5802	Upper frequency limit	2	100.0 to 150.0%	110.0%	The maximum permissible positive deviation of the frequency from the rated system frequency (parameter 1750) is configured here. (Hysteresis 0.05 Hz)
5803	Lower frequency limit	2	50.0 to 100.0%	90.0%	The maximum permissible negative deviation of the frequency from the rated system frequency (parameter 1750) is configured here. (Hysteresis 0.05 Hz)

Table 3-20: Parameter – configuration – operating ranges

System

NOTE

To configure a device in a running system please use *System update* parameter 7789 or DI 23 (see page 91).

ID	Parameter	CL	Setting range	Default	Description
1702	Device Number	2	33 to 48	33	A unique address is assigned to the control though this parameter. This unique address permits the controller to be correctly identified on the network. The address assigned to the controller may only be used once. All other network addresses are calculated on the number entered in this parameter. The device number is also important for the device assignment in load sharing.
4544	Basic segment number	2	1 to 8	1	The Basic segment number describes where the MSLC-2 is placed in relation to other DSLC-2 or MSLC-2. As long as no tiebreaker is located between the busbar voltage measurements of multiple MSLC-2s, the parameter can be remain on "1". Tie-breaker MSLC-2s should have the basic segment number that is on the system A side. NOTE: In case there are different segments available in the application please follow the rules on page 141.
7786	Basic segment number source		Internal / Interface	Internal	This setting determines from which source the Basic segment number comes: Internal: The Basic segment number parameter 4544 Basic segment number is valid. Interface: The setpoint comes via RS-485 Modbus or TCP/IP Modbus Interface with parameter 7785.
7628	Type of MSLC breaker	2	Utility / Tie	Utility	Specifies the type of MSLC-2. Utility: The MSLC-2 controls the utility breaker. The parameters 7625 and 7627 are ignored. Tie: The MSLC-2 controls a tie-breaker (no direct segment connection to utility). The parameters 7625 and 7627 are active.

Page 90/253 © Woodward

ID	Parameter	CL	Setting range	Default	Description
7626	Switch alive bus A -> dead bus B	2	Yes / No	Yes	There could come up a situation that a live busbar at measurement A shall be closed on a dead busbar at measurement B. This configuration is allowing the closure in such a case. If this closure is not allowed, the MSLC-2 would not close the breaker in this case. Yes: The closure is allowed in such a situation, if: • Dead busbar closure is enabled (Menu 1, parameter 7555) AND • The live busbar A is within the operating ranges (parameter 5800 to parameter 5803) AND • The busbar B is dead in the sense of the parameter Dead bus detection max. volt. (Menu 5, parameter 5820). No: The closure is not allowed in such a situation. NOTE: This parameter is only effective, if parameter 7628 is configured to "Tie".

Table 3-21: Parameter – configuration – system settings

Tie (Breaker)

ID	Parameter	CL	Setting range	Default	Description
7625	Switch deadbus A -> dead bus B	2	Yes / No	Yes	There could come up a situation that both sides of the breaker are dead and a close command is given to the tie MSLC-2. This configuration is allowing the closure in such a case. If this closure is not allowed, the MSLC-2 would not close the breaker in this case. Yes: The closure is allowed in such a situation, if: • Dead busbar closure is enabled (Menu 1, parameter 7555) AND • Both busbars are dead in the sense of the parameter Dead bus detection max. volt. (Menu 5, parameter 5820). No: The closure is not allowed in such a situation. NOTE: This parameter is only effective, if parameter 7628 is configured to "Tie".
7627	Switch alive bus B -> dead bus A	2	Yes / No	Yes	There could come up a situation that a live busbar at measurement B shall be closed on a dead busbar at measurement A. This configuration is allowing the closure in such a case. If this closure is not allowed, the MSLC-2 would not close the breaker in this case. Yes: The closure is allowed in such a situation, if: • Dead busbar closure is enabled (Menu 1, parameter 7555) AND • The a live busbar B is within the operating ranges (parameter 5800 to parameter 5803) AND • The dead busbar A is dead in the sense of the parameter Dead bus detection max. volt. (Menu 5, parameter 5820). No: The closure is not allowed in such a situation. NOTE: This parameter is only effective, if parameter 7628 is configured to "Tie".

Table 3-22: Parameter – configuration – tie breaker

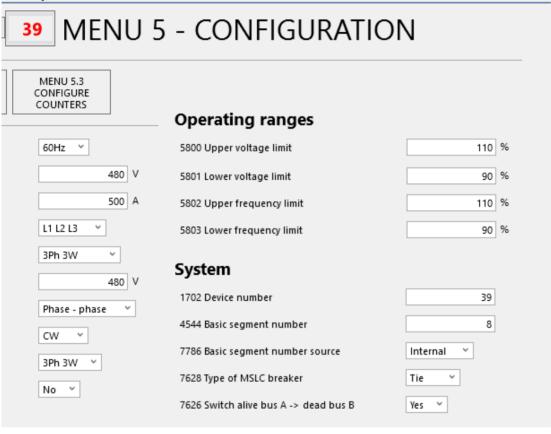
Communication

ID	Parameter	CL	Setting range	Default	Description
7809	Ethernet communication mode	2	Single / Redundant	Single	Single: Network A for UDP messages and Network B for TCP/IP communication Redundant: Network A and Network B are for UDP messages and for TCP/IP communication. If one network fails an alarm will be initiated.
7789	System up- date	2	Off / On	Off	Adding or removing the device can be started

Table 3-23: Parameter – configuration – communication

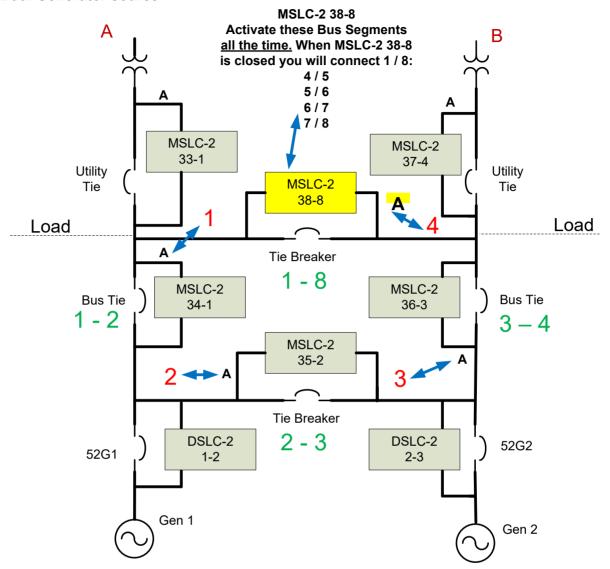
© Woodward Page 91/253

Segment Connections

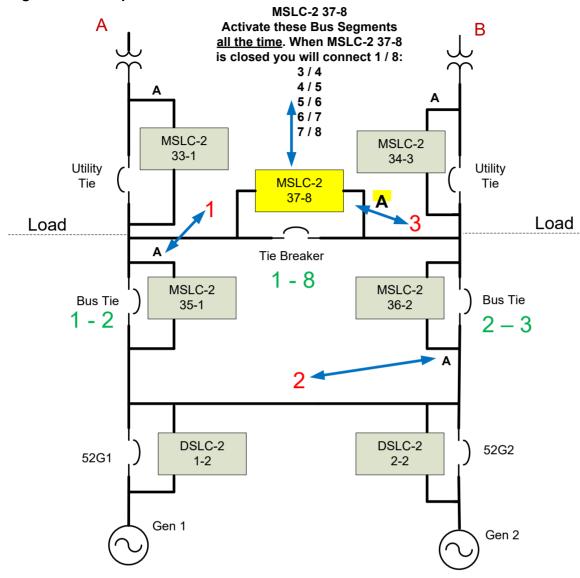

Utility mode

The MSLC-2s "Basic Segment number" (4544) in menu 5 will be set for the Segment number that the System B PT is connected to.

Tie Breaker mode


The MSLC-2s "Basic Segment number" (4544) in menu 5 will be set for the Segment number that the System A PT is connected to. The System A PT is normally connected to the Lowest Segment number and only at segment connection 81 the System B PT has the lower segment number (System A = 8 and System B = 1).

Example


Page 92/253 © Woodward

Dual Generator source

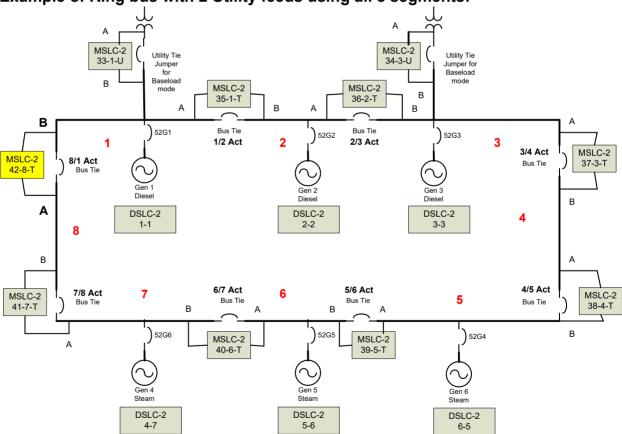
© Woodward Page 93/253

Single Generator power source

The application drawings show that the MSLC-2 Tie Breaker mode will have:

- 1. System A PT connected to the lower segment side
- 2. The MSLC-2 connecting **segments 8 and 1 together**, the System A PT will connect to the Segment 8 side of the breaker.
- 3. This MSLC-2 will be configured for the "Basic Segment number" of 8

The Basic Segment Number of 8 is used to handle the correct information for an 8 to 1 segment connection and it also verifies if the Segment 1 side is connected to the Utility. With this information it will drive the generator sets correctly into synchronization across this breaker.


The MSLC-2 Tie Breaker mode will want to steer the System B PT signal into synchronization with the System A PT signal. If the System B PT is determined to be connected to a Utility, then System PT A will be driven into synchronization with Systems B PT signal. An MSLC-2 across the Utility breaker is how this information is passed to the Tie breaker MSLC-2.

Page 94/253 © Woodward

The MSLC-2 Tie breaker unit should receive the feedback of the breaker closing, using this information to also tell the system what segments got connected. The MSLC-2 will inform all DSLC-2s and MSLC-2s on the system that you activated a segment connection. Say you connected "Segment 1 / 2", this is terminal 141 on all MSLC-2s. It is critical that you only tell the system that segments have been activated if the breaker is closed. Do not trick yourself into thinking that because all segments are closed except 3 / 4, that you should steer your PLC to close the 3 / 4 discrete input. The rules are simple, if the breaker is closed, the MSLC-2 should be informed so it can share this information with everyone else on the system.

80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	63	62	61
	N	Process Control	Setpoint Lower	Setpoint Raise	Ramp Pause	Utility Unload	Base Load -	Volt Lower —	Volt Raise -	CB Aux —	un Screte	e Inpu	Check -	Common DI	ON	Por Sup 12/24		NC	Do Not Use
160	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145	144	143	142	141
	NC				N	С	Common DI	System Update	Modbus Reset	Imp / Exp Control	Seg. No. si: 81 Act	ab Seg. No. ap 78 Act	ul Seg. No. 67 Act	% Seg. No. 56 Act	Seg. No. 45 Act	Seg. No. 34 Act	Seg. No. 23 Act	Seg. No. 12 Act	

Example of Ring bus with 2 Utility feeds using all 8 segments:

© Woodward Page 95/253

Menu 5.1 - Interfaces

This menu contains the parameters for the configuration of the interfaces of the MSLC-2.

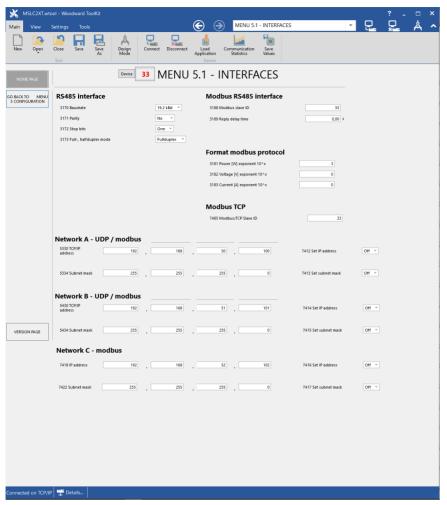


Figure 3-15: ToolKit - interfaces

USB (Service Port) Interface

If the MSLC-2XT is connected to a PC via USB port, the device appears as an USB drive. The drive contains e.g. the technical manual, appropriate configuration files and the virtual COM port driver to connect to the MSLC-2 using ToolKit. If the PC does not install the COM port automatically, then the installer in folder "Driver" must be executed before starting ToolKit

There is no configuration to do for the USB Service Port.

Note:

The USB service port is restricted for ToolKit communication, Woodward service communication, and - if provided by factory side - read only files.

The »Automatic Reconnection« over USB is not possible.

If connection over USB is lost, please reconnect manually:

- 1. Wait until the MSLC is recognized again through the PC (as an external hard drive)
- 2. Start via ToolKit at new by "Disconnect" and then "Connect" again

Page 96/253 © Woodward

Serial Interface 2 - RS-485

The serial interface 2 – RS-485 allows exclusively access by Modbus protocol with configurable parity, stop bits and full-, halfduplex mode. The unit acts here as a RTU slave.

ID	Parameter	CL	Setting range	Default	Description
3170	Baudrate	2	2.4 / 4.8 / 9.6 19.2 / 38.4 / 56.0 / 115.0 kBaud	19.2 kBd	This parameter defines the baud rate for communications. Please note, that all participants on the bus must use the same baud rate.
3171	Parity	2	No / Even / Odd	No	The used parity of the interface is set here.
3172	Stop bits	2	One / Two	One	The number of stop bits is set here.
3173	Full-, halfdu- plex mode	2	Fullduplex / Halfduplex	Fullduplex	Fullduplex: Fullduplex mode is enabled. Halfduplex: Halfduplex mode is enabled.

Table 3-24: Parameter – interfaces – serial 2 – RS485

Modbus Serial Interface 2

ID	Parameter	CL	Setting range	Default	Description
3188	Modbus slave ID	2	0 to 255		The Modbus device address, which is used to identify the device via Modbus, is entered here. If "0" is configured here, the Modbus is disabled.
3189	Reply delay time	2	0.00 to 2.55 s	0.00 s	This is the minimum delay time between a request from the Mod- bus master and the set response of the slave. This time is re- quired in halfduplex mode.

Table 3-25: Parameter – interfaces – serial 2 – Modbus

Network A – UDP / Modbus (Ethernet Channel #1)

The network A – UDP Ethernet bus is reserved for internal communication between all MSLC-2 and DSLC-2 in one system independent on the busbar segment. Up to 32 DSLC-2 and up to 16 MSLC-2 can communicate over the 100 ms – UDP messages.

Additionally, the network A – Modbus/TCP Ethernet bus is provided for external communication purposes with all MSLC-2 and DSLC-2 in one system and a PLC.

ID	Parameter	CIL	Setting range [Default]	Description
5330	IP address	2	[192, 168, 50, 100]	Field 1,2,3,4 for IP address Ethernet port A. This setting will be not valid automatically. The »Set IP address« parameter must be set to »ON« for enabling. Notes: Device part bits are not allowed to be either all 002 or all 112 (broadcast).
7412	Set IP address	2	Off	Set IP-Address Ethernet port A.
5334	Subnet mask	2	[255, 255, 255, 0]	Set byte 1,2,3,4 of the subnet mask Ethernet port A. This setting will be not valid automatically. The »Set subnet mask« parameter must be set to »ON« for enabling.
7413	Set subnet mask	2	Off	Set subnet mask Ethernet port A.

Table 3-26: Parameter - interfaces - network A

© Woodward Page 97/253

Network B – UDP / Modbus (Ethernet Channel #2)

The network B – UDP / Modbus/TCP Ethernet bus is provided for external communication purposes with all MSLC-2 and DSLC-2 in one system and a PLC.

Additionally—if *Ethernet communication mode* (ID 7809) is "Redundant"—the network B – UDP Ethernet bus is reserved for internal communication between all MSLC-2 and DSLC-2 in one system independent on the busbar segment. Up to 32 DSLC-2 and up to 16 MSLC-2 can communicate over the 100 ms – UDP messages.

ID	Parameter	CIL	Setting range [Default]	Description
5430	IP address	2	[192, 168, 50, 101]	Field 1,2,3,4 for IP address Ethernet port B. This setting will be not valid automatically. The »Set IP address« parameter must be set to »ON« for enabling. Notes: Device part bits are not allowed to be either all 002 or all 112 (broadcast).
7414	Set IP address	2	Off	Set IP-Address Ethernet port B.
5434	Subnet mask	2	[255, 255, 255, 0]	Set byte 1,2,3,4 of the subnet mask Ethernet port B. This setting will be not valid automatically. The »Set subnet mask« parameter must be set to »ON« for enabling.
7415	Set subnet mask	2	Off	Set subnet mask Ethernet port B.

Table 3-27: Parameter – interfaces – network B

Network C Modbus (Ethernet Channel #3)

The network C Modbus/TCP Ethernet bus is provided for external communication purposes with a PLC.

ID	Parameter	CT	Setting range [Default]	Description
7418	IP address	2	[192, 168, 52, 102]	Field 1,2,3,4 for IP address Ethernet port C. This setting will be not valid automatically. The »Set IP address« parameter must be set to »ON« for enabling. Notes: Device part bits are not allowed to be either all 002 or all 112 (broadcast).
7416	Set IP address	2	Off	Set IP-Address Ethernet port C.
7422	Subnet mask	2	[255, 255, 255, 0]	Set byte 1,2,3,4 of the subnet mask Ethernet port B. This setting will be not valid automatically. The »Set subnet mask« parameter must be set to »ON« for enabling.
7417	Set subnet mask	2	Off	Set subnet mask Ethernet port C.

Table 3-28: Parameter – interfaces – network C

NOTE

Generally, up to 10 TCP/IP Ethernet stacks are provided per device.

Page 98/253 © Woodward

Format Modbus Protocol (Interface Definitions)

The unit offers a Modbus address table with for visualizing systems. The table contains 16bit integer (short) and 32bit integer (long) variables. The contents of some measurement long variables are also available as short variables. To cover all measurement ranges in a satisfying resolution, the engineering unit "Watt", "Volt" and "Ampere" can be adjusted according to the application.

ID	Parameter	CL	Setting range	Default	Description					
3181	Power [W] exponent 10^x	2	2 to 5	3	This setting adjusts the format of the 16 bit power values in the data telegram. Example power measurement: The measurement range is 0 to 250 kW. Momentarily measurement value = 198.5 kW (198.500 W)					
					Setting	Meaning	Calcula- tion	Transfer value (16Bit, max. 32767)	Possible Display Format	
					2	10 ²	$\frac{198500 W}{10^2 W}$		198.5 kW	
					3	10 ³	$\frac{198500 W}{10^3 W}$	198	198 kW	
					4	10 ⁴	198500 W 10 ⁴ W	19	N/A	
					5	10 ⁵	$\frac{198500 W}{10^5 W}$	1	N/A	
3182	Volts [V] exponent 10^x	2	-1 to 2	0	This setting adjusts the format of the 16 bit voltage values in the data telegram. Example voltage measurement: The measurement range is 0 to 480 V. Momentarily measurement value = 477.8 V					
					Setting	Meaning	Calcula- tion	Transfer value (16Bit, max. 32767)	Possible Display Format	
					-1	10-1	$\frac{477.8V}{10^{-1}V}$	4778	477.8 V	
					0	10º	$\frac{477.8V}{10^0V}$	477	477 V	
					1	10¹	$\frac{477.8 V}{10^1 V}$	47	N/A	
					2	10 ²	$\frac{477.8V}{10^2V}$	4	N/A	
3183	Current [A] exponent 10^x	2	-1 to 0	0	This setting data telegrar		ormat of the	16 bit curren	t values in the	
					Example cu The measure Momentarily	ement range	is 0 to 500 A			
					Setting	Meaning	Calcula- tion	Transfer value (16Bit, max. 32767)	Possible Display Format	
					-1	10 ⁻¹	$\frac{345.4 A}{10^{-1} V}$	3454	345.4 A	
					0	10°	$\frac{345.4V}{10^0V}$	345	345 A	

Table 3-29: Parameter - interfaces - format Modbus protocol

© Woodward Page 99/253

Menu 5.2 System Management

This menu contains the parameters for the system management of the MSLC-2XT.

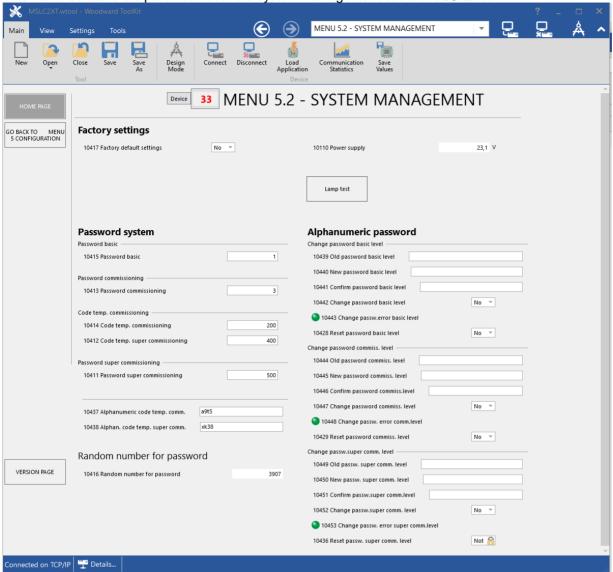


Figure 3-16: ToolKit – system management

Password System

General notes

The controller utilizes a password protected multi-level access hierarchy to prevent unauthorized access to parameters, configuration and calibration items. This permits varying degrees of access to the parameters being granted by assigning unique passwords to designated personnel.

Password protection covers direct and remote access through all methods and interfaces of interconnectivity of the device.

Page 100/253 © Woodward

Personal security

Configure password security before handing over the device to the customer!

Note your password on a secure location. The next higher password level (2 and 4) allows to reset the password of the level below (1 and 3).

To restore the according User Name Account needs support from Woodward (authorized partner).

Access via channel ...

The following table and drawing provide an overview about the possible access channels to the MSLC-2XT.

Access to the MSLC-2XT by	# used in figure "Over- view: Access Rights – Use Cases" below
PC running ToolKit servlink, connected over USB	1
PLC running Modbus TCP	2
PC running ToolKit servlink, connected over Ethernet	3
PLC running Modbus RTU via RS-485	4
Netbiter® Easy Connect gateway running Servlink TCP (ToolKit via internet)	3

Each channel has its own independent access level.

The according password handling for each of this access is defined afterwards.

Two login procedures cover all access channel variants: The ...

- · Basic Code Entry
- · User Account Entry

Hidden entry for more security

The currently selected entry number is visible only - all other numbers are hidden and a "*" asterisk is displayed instead.

© Woodward Page 101/253

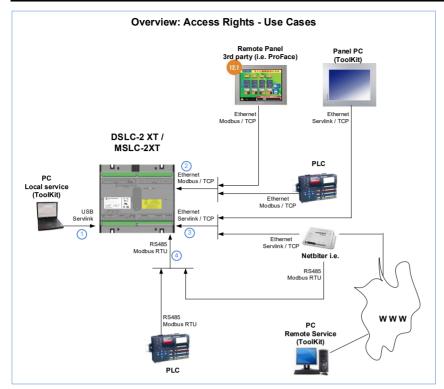


Figure 3-17: Access to the device - Overview

LOGIN procedure "Basic Code Entry"

The Basic Code Entry is valid for access 2 and 4

The Basic Code Entry asks for four numbers to open the related password level. It starts with the default value of parameter 10416 »Random number for password«.

LOGIN procedure "User Account Entry"

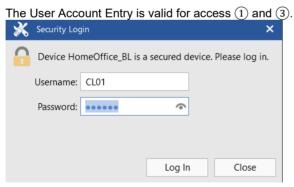


Figure 3-18: Password entry: ToolKit

The User Account Entry comes with more security as requested for internet access. It asks for »Username:« and »Password:« ("Alphanumeric Password"). To open the related password level, both rows entries need the correct alphanumeric strings.

The already existing User names cannot be changed. They are fixed for the desired code level, which shall be entered.

Page 102/253 © Woodward

Check you Password entry

View hidden password entry by pushing the the symbol on the right side of »Password:« box.

Enter Password for level ... (Overview)

A distinction is made between the access levels as follows:

Code	Use	r Account Entry	Basic Code Entry	Comment
Level	User Name	Password	Password.	
		(default)	(default)	
	(fix)			
5	CL05	CL0500	500	The Super Commissioning Level Access to nearly all parameters and configurations, except calibration and super user items. The firmware updating is released. The own code level and the levels below can be indicated and configured.
4	AC04	Algorithm Code	Algorithm Code	The temporary Super Commissioning Level The same access rights like in the Super Commissioning Level but with the following exceptions: • The password for this level is not visible. • The access is dismissed afterwards.
3	CL03	CL0003	3	The Commissioning Level Access to well defined parameters and configurations, which are usually needed on a commissioning level. The own code level and the levels below can be indicated and configured.
2	AC02	Algorithm Code	Algorithm Code	The temporary Commissioning Level The same access rights like in the Commission Level. The Code level is entered in an algorithm code. The access is dismissed afterwards. Only the code levels below can be indicated and configured.

© Woodward Page 103/253

Manual 37947

MSLC-2XT - Master Synchronizer and Load Control

1	CL01	CL0001	1	The Basic Level
				Access to a limited number of parameters and configurations. The own code level can be indicated and configured.
0				No access rights to change, even viewed information is restricted.

_	

Active Code Level

A code level always belongs to an access channel. Each access channel has its own password level. This password level can be different to others (other channels) at the same time.

The access related code level is available and visible beside the access related interface settings.

The Algorithm Code

The "Algorithm Code" is an implemented procedure to give an external user temporarily access to the device but without being able to see or change the according passwords. This temporary access needs a random number produced by the device. The actual password then is calculated from this random number using a secret formula. The secret formula is provided by a higher instance.

Access Channels

Maximum Security

Each of these channels have their own independent access level. That has the advantage that e.g. a ToolKit channel password level opens not automatically the access rights for the other channels.

The device provides different access channels via	Remarks	
USB	ToolKit Servlink	
RS485	Modbus RTU	
Ethernet	Modbus TCP	
	ToolKit Servlink TCP, 8 sub channels are possible	
	Note: Each of the 8 sub channels has its own independent password access level!	

Page 104/253 © Woodward

Code Level 1 - The Basic Level CL01

· General:

This level releases the access to a limited number of parameters and configurations

· Basic Code entry:

In this and higher levels the password for the Basic Code Level CL01 can be changed

· User Account Entry:

This level is selected with the User Name CL01 and the according password can only be changed being in code level CL01.

Being in code level AC02 or higher the password of the Basic Level CL01 can be reset to its default by the Yes/No parameter 10428.

Code Level	User Account Entry		Basic Code Entry
	User Name	Password	Password
	(fix)	(default)	(default)
1	CL01	CL0001	0001

Code Level 2 - The temporary Commissioning Level AC02

· General:

This Level allows temporary access to parameters of the Commission Level.

The access is dismissed automatically (see $\sqsubseteq \triangleright$ "Automatic Logout from Password level (Fall into level 0)").

· Basic Code Entry:

In this and higher Levels, the password for the Basic Code Level CL01 can be changed.

· User Account Entry:

This level is selected with the User Name AC02 and the according algorithm for the password can only be changed being in the Commissioning code level CL03.

Being in code level AC02 or higher the password of the Basic Level CL01 can be reset to its default by the Yes/No parameter 10428.

© Woodward Page 105/253

Code Level	User Account Entry		Basic Code Entry	
	User Name (fix)	Password	Password	
2	AC02	The entry procedure: The operator connects ToolKit with the device and closes the upcoming security login window without entering username and password (Code level 0). The operator navigates with ToolKit to the page [Parameter / Configure system management]. The operator reads on that page 10416 »Random number for password«. He tells it to a higher instance. The higher instance calculates: (10414 »Code temp. commissioning« + 10416 »Random Number«) x 3. The higher instance takes the lower four digits of the result and puts the according algorithm string 10437 »Alphanumeric code temp. comm.« as prefix in front. The higher instance tells the result to the operator, who enters the result as password into the control.	The operator navigates on ToolKit to MENU 5.2 SYSTEM MANAGEMENT. The operator reads the indicated random number. He tells it to a higher instance. The higher instance calculates: (10414 »Code temp. commissioning« + 10416 »Random Number«) x 3. The higher instance takes the lower four digits of the result and tells it the operator. The operator enters the result as password into the control.	

Code Level 3 - The Commissioning Level CL03

· General:

In this Level, the operator has access to all parameters and configurations, which are usually needed on a commissioning level

· Basic Code Entry:

In this and higher levels the password for the Commissioning Level CL03 can be changed

· User Account Entry:

This level is selected with the User name CL03 and the according password can only be changed being in the Commissioning Level CL03

Being in code level AC04 or higher the password of the Commissioning Level CL03 can be reset to its default by the Yes/No parameter ID 10429.

Page 106/253 © Woodward

Level	User Account Entry		Basic Code Entry
	User Name	Password	Password
	(fix)	(default)	(default)
3	CL03	CL0003	0003

Code Level 4 - The temporary Super Commissioning Level

· General:

This Level allows temporary access to nearly all parameters and configurations, except calibration and super user items.

The access is dismissed automatically

· Basic Code Entry:

In this and higher levels the passwords for the Commissioning Level CL04 can be changed

· User Account Entry:

This level is selected with the User name AC03 and the according algorithm for the password can only be changed being in the Super Commissioning Level CL05

Being in code level AC04 or higher the password of the Commissioning Level CL03 can be reset to its default by the Yes/No parameter ID 10429.

Level	User Account Entry		Basic Code Entry	
	User Name	Password	Password	
4	AC04	The entry procedure: The operator connects ToolKit with the device and closes the upcoming security login window without entering username and password (Code level 0). The operator navigates with ToolKit to the page [Parameter / Configure system management]. The operator reads on that page 10416 »Random number for password«.	The entry procedure: The operator navigates on ToolKit to MENU 5.2 SYSTEM MANAGEMENT The operator reads the indicated random number. He tells it to a higher instance.	

© Woodward Page 107/253

MSLC-2XT - Master Synchronizer and Load Control

unuai vi v+i	mozo zxi maotor oyno	monizer and zoda control
	He tells it to a higher instance. The higher instance calculates:	The higher instance calculates: (10412 »Code temp. commissioning« + 10416
	(10412 »Code temp. commissioning« + 10416 »Random Number«)	»Random Number«) x 5.
	x 5.	The higher instance takes the lower four digits of the result
	The higher instance takes the lower four digits of the result and puts the according algorithm string 10438 »Alphanumeric code super temp. comm.« as prefix in front.	and tells it the operator. The operator enters the result as password into the control.
	The higher instance tells the result to the operator, who enters the result as password into the control.	

Code Level 5 - The Super Commissioning Level CL05

· General:

In this Level, the operator has access to nearly all parameters and configurations, except calibration items

The firmware updating is released

· Basic Code Entry:

In this and higher Levels the password fro the Super Commissioning Level CL05 can be changed

User Account Entry:

This level is selected with the User name CL05 and the according password can only be changed being in the Super Commissioning Level CL05

Being in a higher level as CL05 the password of the Super Commissioning Level CL05 can be reset to its default by the Yes/No parameter ID 10436.

If you have forgotten your password for the Super Commissioning Level, please contact Woodward or a representative for help.

Level	User Account Entry		Basic Code Entry
	User Name	Password	Password
	(fix)	(default)	(default)
5	CL05	CL0500	0500

Page 108/253 © Woodward

Automatic Logout from Password level (Fall into level 0)

All basic code entry channels deny after 2h

The Modbus TCP access channel denies after 2h

Generally with power supply cycling the password level is

denied. The ToolKit Servlink access never logout

What forces the Logout from Password levels (Fall into level 0)

All basic code entry channels with »0« as password or a wrong

password The ToolKit Servlink access with logout function

The Modbus TCP (in all channels) with wrong password

Definition of the password

Numeric Password oft he Basic Code entry

• The range of possible passwords is 1 to 9999

Alpha numeric Password of the User Account entry

- The maximum length of the alpha numeric password is 20 characters
- The maximum length of the alpha numeric prefix (ID 10437, 10438) is 6

The Random Number

Each time a password is entered, the random number is calculated at new. This guarantees max. security.

Password handling via Modbus using RS-485

The device must be a member of a RS-485 network and the password has to be transferred (from PLC) to the device.

Set the device to code level 5 via Modbus RS-485

With factory settings the password is expected to be "500" for code level 5.

- Modbus address = 400000 + Par. ID= 410430
- Modbus length = 1 (UNSIGNED 16)

Code level state can be read with index 10420 localized in ToolKit: [MENU 0 - DIAGNOSTICS]

© Woodward Page 109/253

Password handling via Modbus using Modbus TCP

The device must be a member of an Ethernet network (A, B, or C) and the password has to be transferred (from PLC) to the device.

Set the device to code level 5 via Modbus TCP

With factory settings the password is expected to be "500" for code level 5.

- Modbus address = 400000 + Par. ID = 410434
- Modbus length = 1 (UNSIGNED 16)
- Modbus address = 400000 + Par. ID = 410435
- Modbus length = 1 (UNSIGNED 16)

(To be backwards compatible to MSLC-2 the parameter ID 10434 or ID 10435 can be used. Regardless which of the two IDs is used, it is valid for all 3 Ethernet ports.)

Code level state can be read with index 10427 localized in ToolKit: [MENU 0 - DIAGNOSTICS].

Notes

Generally, up to 10 TCP/IP Ethernet stacks are provided per device. (The splitting to the 3 Ethernet ports does not matter.)

Only one code level is used at a time. The highest code level is valid.

Password expiry

2pm	3pm	4pm	5pm	time
CL5is set	CL3is set	CL5 has	CL3 has	
via ID	via ID	expired (CL3	expired	
10434	10435	is still active)	too	

The figure above shows an example of password expiration.

If code level 5 is set via 10434 at 2 pm and code code level 3 is set via 10435 at 3 pm, code level 5 expires at 4 pm codelevel 3 expires at 5 pm.

Code level interfaces

ID	Parameter	CIL	Setting range	Description
			[Default]	
10430	Password for serial interface	0	0000 to 9999	The password for configuring the control via the RS485 interface
			[random number]	must be entered here.
				Not visible but can be accessed by interface!
10420	Code level	0	[0]	This value displays the code level, which is currently enabled for access via the RS485 interface.

Page 110/253 © Woodward

Released

10427	Code level	0	[0]	This value displays the code level,
				which is currently enabled for access via the Modbus TCP/IP interface.

© Woodward Page 111/253

Password System - Parameter Overview

General notes

The following passwords grant varying levels of access to the parameters.

ID	Parameter	CT	Setting range [Default]	Description
10415	Password basic	1	1 to 9999 [-]	The password for the code level "Basic" is defined in this parameter. Refer to "Enter Password" for default values.
10413	Password commissioning	3	1 to 9999 [-]	The password for the code level "Commissioning" is defined in this parameter. Refer to "Enter Password" for default values.

ID	Parameter	CIL	Setting range [Default]	Description
10414	Code temp. commissioning	3	1 to 9999 [200]	The algorithm for calculating the password for the code level "Temporary Commissioning" is defined in this parameter.
10412	Code temp. super commissioning	5	1 to 9999 [400]	The algorithm for calculating the password for the code level "Temporary Super commissioning" is defined in this parameter.
10411	Password super commissioning	5	1 to 9999 [500]	The password for the code level "Super commissioning" is defined in this parameter. Refer to "Enter Password" for default values.

Page 112/253 © Woodward

Manual 37947

MSLC-2XT - Master Synchronizer and Load Control

10437	Alphanumeric code temp. comm.	3	(up tp 6 characters) [a9t5]	Alphanumeric code for temporary commissioning level. This is the alphanumeric algorithm value for the formula to reach the temporary commissioning code level (Level 02), entered as string here.
10438	Alphan. code temp. super comm.	5	(up tp 6 characters) [xk38]	Alphanumeric code for temporary super commissioning level This is the alphanumeric algorithm value for the formula to reach the temporary commissioning code level (Level 04), entered as string here.

Random Number for Password

ID	Parameter	CI	Setting range [Default]	Description
10416	Random number for password		[(random four letters number)]	Random number generated by the device. Needed to get an alphanumeric password by Woodward support.

© Woodward Page 113/253

Change/Reset Alphanumeric Password

ID	Parameter	CL	Setting range	Description			
			[Default]				
Change pass	Change password basic level						
10439	Old password basic level	1	((empty))	Enter here your old alphanumeric password to release the password change for the basic code level (CL01)			
10440	New password basic level	1	((empty))	Enter here your new alphanumeric password string for the basic code level (CL01)			

				level (CLU1)
ID	Parameter	CL	Setting range	Description
			[Default]	
10441	Confirm password basic level	1	((empty))	Repeat here your new alphanumeric password string for the basic code level (CL01)
10442	Change password basic level	1	[No] Yes	With switching this parameter to yes, the control checks the entries for changing the password and executes the password change, if the entries are correct. The visualization 10443 indicates the successful execution.
				Notes
				If the parameters 10439, 10440, and 10441 are not correct, the password change is not executed.
10443	Change passw.error basic	0		Flag: illuminated LED
	level		[green]	Password was not changed or successfully changed
			red	Error: password could not be changed
10428	Reset password basic level	2	Yes	The control resets the password of the basic level to "CL0001".
			[No]	
Change pass	sword commissioning level			
10444	Old password commiss. level	3	((empty))	Enter here your old alphanumeric password to release the password change for the commissioning code level (CL03)
10445	New password commiss. level	3	((empty))	Enter here your new alphanumeric password string for the commissioning code level (CL03)
10446	Confirm password commiss.level	3	((empty))	Repeat here your new alphanumeric password string for the commiss. code level (CL03)

Page 114/253 © Woodward

10447	Change password commiss. level	3	[No] Yes	With switching this parameter to »Yes«, the control checks the entries for changing the password and executes the password change, if the entries are correct. The visualization 1048 indicates the successful execu- tion.
				Notes If the parameters 10444, 10445, and 1046 are not correct, the password change is not executed.
10448	Change passw. error	0		Flag: illuminated LED
	comm.level		[green]	Password was not changed or successfully changed
			red	Error: password could not be changed

ID	Parameter	CL	Setting range [Default]	Description
10441	Confirm password basic level	1	((empty))	Repeat here your new alphanumeric password string for the basic code level (CL01)
10442	10442 Change password basic level	1	[No] Yes	With switching this parameter to yes, the control checks the entries for changing the password and executes the password change, if the entries are correct. The visualization 10443 indicates the successful execution.
				Notes
				If the parameters 10439, 10440, and 10441 are not correct, the password change is not executed.
10443	Change passw.error basic level	0		Flag: illuminated LED
			[green]	Password was not changed or successfully changed
			red	Error: password could not be changed
10428	Reset password basic level	2	Yes	The control resets the password of the basic level to "CL0001".
			[No]	
Change pass	sword commissioning level			
10444	Old password commiss. level	3	((empty))	Enter here your old alphanumeric password to release the password change for the commissioning code level (CL03)
10445	New password commiss. level	3	((empty))	Enter here your new alphanumeric password string for the commissioning code level (CL03)

© Woodward Page 115/253

Manual 37947

MSLC-2XT - Master Synchronizer and Load Control

10446	Confirm password commiss.level	3	((empty))	Repeat here your new alphanumeric password string for the commiss. code level (CL03)
10447	Change password commiss. level	3	[No] Yes	With switching this parameter to "Yes", the control checks the entries for changing the password and executes the password change, if the entries are correct. The visualization 1048 indicates the successful execution. Notes If the parameters 10444, 10445, and 1046 are not correct, the password change is not executed.
10448	Change passw. error	0		Flag: illuminated LED
	comm.level		[green]	Password was not changed or successfully changed
			red	Error: password could not be changed

Factory Settings

ID	Parameter	CL	Setting range	Default	Description
10417	Factory default settings	0	No / Yes	No	Selecting "Yes" will allow the reset back to Factory default settings by selecting "Yes" for the Reset factory default values parameter (parameter 1701).
1701	Reset factory default values	0	No / Yes	No	No: All parameters will remain as currently configured. Yes: All parameters, which the enabled access code grants privileges to, will be restored to factory default values. This value returns to "No" when factory defaults are set.

Table 3-30: Parameter – system management – factory settings

Lamp Test (Button)

Push this button to illuminate all lights on the controller. Correct LED operation can be checked.

Power Supply

ID	Parameter	CL	Setting range	Default	Description
10110	Power sup- ply	0	-	-	Display of the measured supply voltage in V

Table 3-31: Parameter – system management – power supply

Page 116/253 © Woodward

Menu 5.3 - Configure Counters

This menu contains the parameters for the Configuration of the Counters of the MSLC-2.

Figure 3-19: ToolKit – configure counters

© Woodward Page 117/253

System A reset values

ID	Parameter	CL	Setting range	Default	Description
2515	Counter value pre- sent	2	0 to 999,999,99	[0]	This value is utilized to set the following counters: • kWh counter • kvarh counter The number entered into this parameter is the number that will be set to the parameters listed above when they are enabled.
2510	Syst. A active power [0.00 MWh]	2	Yes / No	[No]	Yes: The current value of this counter is overwritten with the value configured in "Counter value preset" (parameter 2515). After the counter has been (re)set, this parameter changes back to "No" automatically. No: The value of this counter is not changed. Example The counter value preset (parameter 2515) is configured to "3456". If this parameter is set to "Yes", the "System A active power" counter will be set to 34.56 MWh.
2511	Syst. A react. power [0.00 Mvarh]	2	Yes / No	[No]	Yes: The current value of this counter is overwritten with the value configured in "Counter value preset" (parameter 2515). After the counter has been (re)set, this parameter changes back to "No" automatically. No: The value of this counter is not changed. Example • The counter value preset (parameter 2515) is configured to "3456". If this parameter is set to "Yes", the " System A reactive power" counter will be set to 34.56 Mvarh.
2512	Syst. A -ac- tive power [0.00 MWh]	2	Yes / No	[No]	Yes: The current value of this counter is overwritten with the value configured in "Counter value preset" (parameter 2515). After the counter has been (re)set, this parameter changes back to "No" automatically. No: The value of this counter is not changed. Example • The counter value preset (parameter 2515) is configured to "3456". If this parameter is set to "Yes", the "System A -active power" counter will be set to 34.56 MWh.
2513	Syst. A -react. power [0.00 Mvarh]	2	Yes / No	[No]	Yes: The current value of this counter is overwritten with the value configured in "Counter value preset" (parameter 2515). After the counter has been (re)set, this parameter changes back to "No" automatically. No: The value of this counter is not changed. Example • The counter value preset (parameter 2515) is configured to "3456". If this parameter is set to "Yes", the " System A -reactive power" counter will be set to 34.56 Mvarh.

Table 3-32: Parameter – configure counters

Page 118/253 © Woodward

Menu 6 - Analog Inputs

This menu contains the parameters for the configuration of the analog inputs of the MSLC-2.

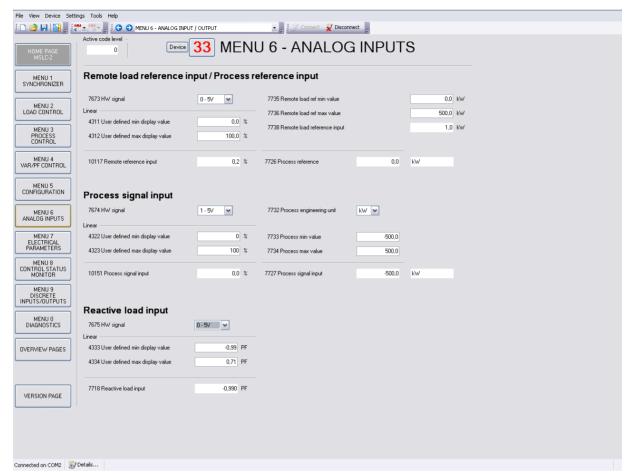


Figure 3-20: ToolKit - analog inputs

Remote Load Reference Input / Process Reference Input

This analog input can be used for two functionalities:

1. Remote load reference input. The input becomes active, if the DI "Setpoint Raise" / "Setpoint Lower" (remote) are closed and the DI "Base Load" or "Imp/Exp Control" is closed.

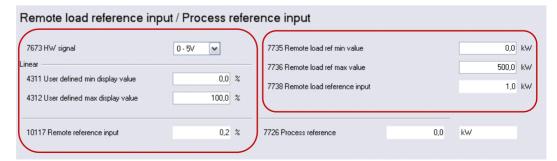


Figure 3-21: ToolKit – relevant fields for remote load reference input

The load control interacts with the percentage input value shown in field *Remote reference input* (parameter 10177). The setting on the right side is the scaling for a minimum and maximum load value while displaying the actual kW setting, which is shown in the field *Remote load reference input* (parameter 7738).

© Woodward Page 119/253

2. Process reference input. The input becomes active, if the DI "Setpoint Raise" / "Setpoint Lower" (remote) are closed and the DI "Process Control" is closed.

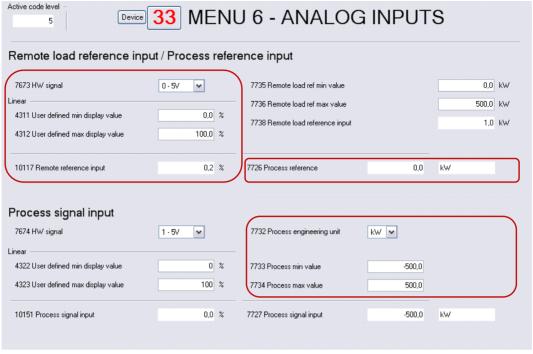


Figure 3-22: ToolKit – relevant fields for remote process reference input

The process control interacts with the percentage input value shown in field *Remote reference input* (parameter 10117). The setting on the right side will display the actual *Process reference* (parameter 7726). The process engineering unit will allow you to display a 4 to 20 mA input as a kW value (Example, there are many engineering units to select). The process signal input and the process reference (remote) will both display the engineering units selected.

ID	Parameter	CL	Setting range	Default	Description
7673	HW signal	2	0 to 20 mA./ 4 to 20 mA./ 0 to 10 V./ 0 to 5 V./ 1 to 5 V	0 to 5 V	Selection of hardware signal range.
Linear					
4311	User defined min display value	2	-100.0 to 100.0%	0.0%	Remote load reference input / process reference input. Linear scaling: This is the percentage value according to the lowest hardware signal.
4312	User defined max display value	2	-100.0 to 100.0%	100.0%	Remote load reference input / process reference input. Linear scaling: This is the percentage value according to the highest hardware signal.
10117	Remote reference input	1	Info	-	This is the resulting percentage value calculated out of the minimum and maximum scaling as to what the remote input actually has connected.
7735	Remote load ref min value	2	-999999.9 to 999999.9 kW	0.0 kW	This setting is only in use, if the remote load reference input is in use (see description above). This value is the according kW value to the percentage value according to the lowest hardware signal (parameter 4311). This setting is used to display the analog input reference in kW.
7736	Remote load ref max value	2	-999999.9 to 999999.9 kW	500.0 kW	This setting is only in use, if the remote load reference input is in use (see description above). This value is the according kW value to the percentage value according to the highest hardware signal (parameter 4312). This setting is used to display the analog input reference in kW.

Page 120/253 © Woodward

Manual 37947

ID	Parameter	CL	Setting range	Default	Description
7738	Remote load reference input	1	Info	-	This is the resulting kW value calculated out of the minimum and maximum scaling.
7726	Process reference	-	Info	-	This is the resulting <i>Process reference</i> value calculated out of the minimum and maximum scaling, adjusted in parameter 7733 and parameter 7734.

Table 3-33: Parameter – analog inputs – reference input: remote load/process

Process Signal Input

This analog input stands for the process control real signal. The input comes as a hardware signal but the engineering values can be selected here. The process engineering units are adjustable and used for visualizing purposes. The regulation of the process is done with the percentage value.

Figure 3-23: ToolKit – process signal input

ID	Parameter	CL	Setting range	Default	Description
7674	HW signal	2	0 to 20 mA./ 4 to 20 mA./ 0 to 10 V./ 0 to 5 V./ 1 to 5 V	1 to 5 V	Selection of hardware signal range.
Linear					
4322	User defined min display value	2	-100.0 to 100.0%	0.0%	Process signal input (real value). Linear scaling: This is the percentage value according to the lowest hardware signal.
4323	User defined max display value	2	0.0 to 100.0%	100.0%	Process signal input (real value). Linear scaling: This is the percentage value according to the lowest hardware signal.
10151	Process signal input	-	Info	-	This is the resulting percentage value calculated out of the minimum and maximum scaling.
7732	Process engineering unit	2	kW / °C / kPa / bar / V / mA	kW	The process control engineering units can be determined here. With this input the reference and the real value can be defined in engineering units.
7733	Process min value	2	-999999.9 to 999999.9	-500.0	This value is the engineering unit value to the percentage value according to the lowest hardware signal (parameter 4322).
7734	Process max value	2	-999999.9 to 999999.9	500.0	This value is the engineering unit value to the percentage value according to the highest hardware signal (parameter 4323).
7727	Process signal Input	-	Info	-	This is the resulting process signal input value calculated out of the minimum and maximum scaling, adjusted in parameter 7733 and parameter 7734.

Table 3-34: Parameter – analog inputs – process signal input

© Woodward Page 121/253

Reactive Load Input

This analog input stands for the power factor reference signal. Remote var reference control is not available at this time. To activate the remote reactive load input, the discrete inputs "Voltage raise" and "Voltage lower" must be closed.

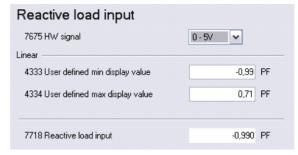


Figure 3-24: ToolKit - reactive load input

ID	Parameter	CL	Setting range	Default	Description				
7675	HW signal	2	0 to 20 mA./ 4 to 20 mA./ 0 to 10 V./ 0 to 5 V./ 1 to 5 V	0 to 5 V	Selection of hardware signal range.				
Linear	Linear								
4333	User defined min display value	2	-0.999 to 0.999 PF	-0.990 PF	Power factor reference signal input. Linear scaling: This is the power factor value according to the lowest hardware signal.				
4334	User defined max display value	2	-0.999 to 0.999 PF	0.710 PF	Power factor reference signal input. Linear scaling: This is the power factor value according to the highest hardware signal.				
7718	Reactive load input	-	Info	-	This is the resulting power factor reference calculated out of the minimum and maximum scaling, adjusted in parameter 4333 and parameter 4334.				

Table 3-35: Parameter – analog inputs – reactive load input

Page 122/253 © Woodward

Menu 7, 7.1 and 7.2 - Electrical Parameters

This menu contains the general electrical parameters of the MSLC-2.

Figure 3-25: ToolKit – electrical parameters

Menu 7, 7.1, and 7.2 provide all the AC measurement, voltage, current, power and reactive power. The System A (menu 7.1) is always a 3-phase measurement and the System B (menu 7.2) is measured as a single phase. A configuration in Menu 5, *Auxiliary system B available* (parameter 7649), allows additionally the measurement of the system B with 3 phases. The option of the 3-phase system B measurement allows the monitoring of all 3 phases and detection of the system B phase rotation. Menu 7 will display the auxiliary system B measurement values when parameter 7649 is configured to "Yes".

Menu 7.1 - System A

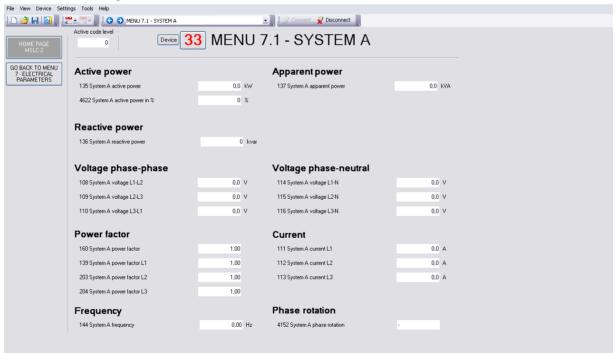


Figure 3-26: ToolKit – electrical parameters System A

Active Power

I	ID	Parameter	CL	Setting range	Format	Description
	135	System A active power	-	Info	0.0 kW	Display of System A active power in kW.
	4622	System A active power	-	Info	0%	Display of System A active power in%.

Table 3-36: Parameter – System A – active power

© Woodward Page 123/253

Reactive Power

ID	Parameter	CL	Setting range	Format	Description
	System A reactive power	1	Info	0.0 kvar	Display of System A reactive power in kvar.

Table 3-37: Parameter – system A – reactive power

Apparent Power

ID	Parameter	CL	Setting range	Format	Description
	System A apparent power	1	Info	0.0 kVA	Display of System A apparent power in kVA.

Table 3-38: Parameter – system A – apparent power

Voltage phase-phase

ID	Parameter	CL	Setting range	Format	Description
108	System A Voltage L1-L2	1	Info	0.0 V	Display of System A voltage L1-L2 in V.
109	System A Voltage L2-L3	1	Info	0.0 V	Display of System A voltage L2-L3 in V.
110	System A Voltage L3-L1	1	Info	0.0 V	Display of System A voltage L3-L1 in V.

Table 3-39: Parameter – System A – voltage phase-phase

Voltage phase-neutral

ID	Parameter	CL	Setting range	Format	Description
114	System A voltage L1-N	-	Info	0.0 V	Display of System A voltage L1-N in V.
115	System A voltage L2-N	-	Info	0.0 V	Display of System A voltage L2-N in V.
116	System A voltage L3-N	-	Info	0.0 V	Display of System A voltage L3-N in V.

Table 3-40: Parameter – System A – voltage phase-neutral

Power Factor

ID	Parameter	CL	Setting range	Format	Description
160	System A power factor	-	Info	1.00	Display of System A power factor.
139	System A power factor L1	-	Info	1.00	Display of System A power factor L1.
203	System A power factor L2	-	Info	1.00	Display of System A power factor L2.
204	System A power factor L3	-	Info	1.00	Display of System A power factor L3.

Table 3-41: Parameter – system A – power factor

Current

ID	Parameter	CL	Setting range	Format	Description				
111	System A current L1	1	Info	0.0 A	Display of System A current L1 in A.				
112	System A current L2	1	Info	0.0 A	Display of System A current L2 in A.				

Page 124/253 © Woodward

Manual 37947

MSLC-2XT - Master Synchronizer and Load Control

ID	Parameter	CL	Setting range	Format	Description
113	System A current L3	-	Info	0.0 A	Display of System A current L3 in A.

Table 3-42: Parameter – System A – current

Frequency

ID	Parameter	CL	Setting range	Format	Description
144	System A frequency	1	Info	0.00 Hz	Display of System A frequency in Hz.

Table 3-43: Parameter – System A – frequency

Phase Rotation

ID	Parameter	CL	Setting range	Format	Description
415	System A phase rotation	-	Info	-/CW/ CCW	Display of System A phase rotation: -: The phase rotation is not measurable CW: Clock Wise = phase rotation right CCW: Counter Clock Wise = phase rotation left

Table 3-44: Parameter – system A – phase rotation

© Woodward Page 125/253

Menu 7.2 - System B



Figure 3-27: ToolKit – electrical parameters System B

Voltage

ID	Parameter	CL	Setting range	Format	Description
	System B average volt	-	Info		Display of System B average voltage in V. (If auxiliary System B is available, average Ph-Ph, if not L1-L2 or L1-N depending on "1858 1Ph2W voltage measuring".)

Table 3-45: Parameter – system B – voltage

Frequency

ID	Parameter	CL	Setting range	Format	Description
209	System B frequency	-	Info	0.00 Hz	Display of System B frequency in Hz.
4640	Delta frequency system B-A	-	Info	0.00 Hz	Display of Delta frequency system B-A in Hz.

Table 3-46: Parameter – system B – frequency

Phase Angle

ID	Parameter	CL	Setting range	Format	Description
181	Phase angle system B-A	-	Info	180.0°	Display of Phase angle system B-A in degrees.

Table 3-47: Parameter – system B – phase angle

Phase Rotation

ID	Parameter	CL	Setting range	Format	Description
4152	Configured system B phase rota- tion	-	Info	CW/ CCW	Display of the Configured system B phase rotation: CW: Clock Wise = phase rotation right CCW: Counter Clock Wise = phase rotation left NOTE: This is no measurement displaying. This field shows the configuration of the 1Ph 2W phase rotation (parameter 1859) in Menu 5.

Table 3-48: Parameter – System B – phase rotation

Page 126/253 © Woodward

Auxiliary System B Measurement

(depends on parameter 7649 Auxiliary System B available)

Voltage phase-phase (Aux. System B)

ID	Parameter	CL	Setting range	Format	Description
118	Aux System B voltage L1-L2	-	Info	0.0 V	Display of Auxiliary System B voltage L1-L2 in V.
119	Aux System B voltage L2-L3	-	Info	0.0 V	Display of Auxiliary System B voltage L2-L3 in V.
120	Aux System B voltage L3-L1	-	Info	0.0 V	Display of Auxiliary System B voltage L3-L1 in V.

Table 3-49: Parameter – aux. system B – voltage phase-phase

Voltage phase-neutral (Aux. System B)

ID	Parameter	CL	Setting range	Format	Description
121	Aux System B voltage L1-N	-	Info	0.0 V	Display of Auxiliary System B voltage L1-N in V.
122	Aux System B voltage L2-N	-	Info	0.0 V	Display of Auxiliary System B voltage L2-N in V.
123	Aux System B voltage L3-N	-	Info	0.0 V	Display of Auxiliary System B voltage L3-N in V.

Table 3-50: Parameter – aux. system B – voltage phase-neutral

Frequency (Aux. System B)

ID	Parameter	CL	Setting range	Format	Description
147	Aux System B frequency	1	Info	0.00 Hz	Display of Auxiliary System B frequency in Hz.

Table 3-51: Parameter – aux. system B – frequency

Phase Rotation (Aux. System B)

ID	Parameter	CL	Setting range	Format	Description
4152	Aux System B phase rotation	-	Info	-/CW/ CCW	Display of Auxiliary System B phase rotation: -: The phase rotation is not measurable CW: Clock Wise = phase rotation right CCW: Counter Clock Wise = phase rotation left

Table 3-52: Parameter – auxiliary system B – phase rotation

© Woodward Page 127/253

Menu 8 - Control Status Monitor

This menu contains the parameters of the control status monitor of the MSLC-2 showing the actual modes, references and alarms.

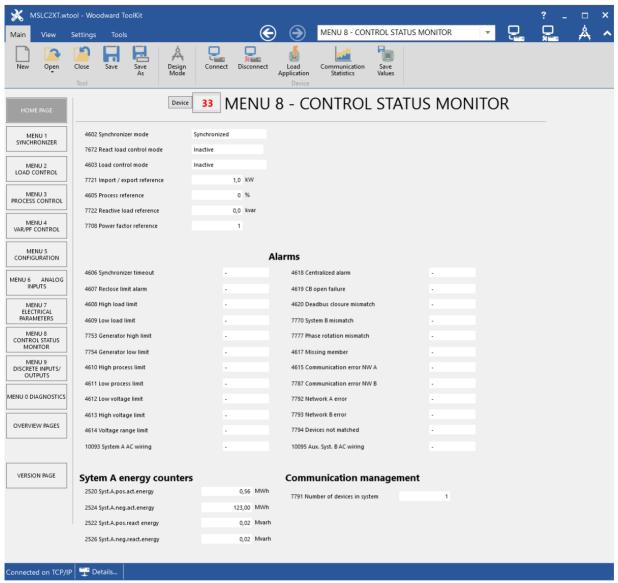


Figure 3-28: ToolKit - control status monitor

ID	Parameter	CL	Setting range	Format	Description
4602	Synchronizer mode	1	Off / Synchronized / Permissive / Check / Run / Sync Timer / Auto-Off / Close Timer/ Manual	-	Off: The synchronizer is not active. Synchronized: The CB is closed. Permissive: The synchronizer runs in permissive mode. Check: The synchronizer runs in check mode. Run: The synchronizer is full active. Sync Timer: The synchronizer is stopped, because of a sync time-out. Auto-Off: The synchronizer is stopped, because of an unsuccessful closure of the CB. (resync is disabled). Close Timer: This is the CB close command. Manual: manual synchronization

Page 128/253 © Woodward

ID	Parameter	CL	Setting range	Format	Description
7672	Reactive load control mode	-	Off / Inactive / Voltage Control / VAR Control / Power Factor Control / Const Gen PF Control /	•	Display of the different Reactive load control modes: Off: The reactive load control mode is disabled. Inactive: The reactive load control is not active. Voltage Control: The voltage control is active. VAR Control: The reactive load control with kvar reference is active. Power Factor Control: Power factor control is active. Const Gen PF Control: The reactive load control with a constant power factor reference is active.
4603	Load control mode	-	Off Line / Inactive / Base Load / Base Load Lower / Base Load Raise / Base Load Re- mote / Process Control / Process Raise / Process Ramp / Import Export Control / Import Export Ramp / Import Export Remote / Import Export Remote / Import Export Remote / Imp Exp Lower / Imp Exp Lower / Imp Exp Raise / Utility Unload	-	Off Line: The load control mode is disabled. Inactive: The load control mode is inactive. Base Load: The Load control operates in base load. Base Load Lower: A base load lower command is active. Base Load Remote: The load control setpoint comes remotely. Process Control: The process control is full active Process Raise: A process reference lower command is active. Process Raise: A process reference comes remotely. Process Ramp: The Process reference comes remotely Process Ramp: The Process ramps toward the reference setting before it hands off to the Process Control. Import Export Control: The Import Export control is active. Import Export Remote: The Import Export reference value comes remotely Imp Exp Lower: The Import Export lower command is active. Imp Exp Raise: The Import Export raise command is active. Imp Exp Raise: The Import Export raise command is active. Imp Exp Raise: The Import Export raise command is active. Utility Unload: The utility (tie-breaker) is unloaded.
7721	Import / ex- port refer- ence	-	Info	0.0 kW	Display of Import / export load control reference in kW. This field indicates the momentarily load control setpoint.
4605	Process reference	-	Info	0.0%	Display of process control reference in percentage. This field indicates the momentarily process control setpoint.
7722	Reactive load reference	-	Info	0.0 kvar	Display of <i>Reactive load reference</i> in kvar. This field indicates the momentarily reactive load control setpoint.
7708	Power factor reference	-	Info	0.00	Display of the Power factor reference.

Table 3-53: Parameter – control status monitor

Alarms

NOTE

All alarms are self-acknowledged! Alarm states are not stored.

ID	Parameter	CL	Setting range	Format	Description
4606	Synchronizer timeout	-	Info	- / Alarm	Display of Alarm: Synchronizer timeout.
4607	Sync reclose limit	-	Info	- / Alarm	Display of Alarm: Synchronizer reclose limit.
4608	High load limit	-	Info	- / Alarm	Display of Alarm: High load limit.
4609	Low load limit	-	Info	- / Alarm	Display of Alarm: Low load limit.

© Woodward Page 129/253

ID	Parameter	CL	Setting range	Format	Description
7753	Generator high limit	-	Info	- / Alarm	Display of Alarm: Generator high limit.
7754	Generator low limit	-	Info	- / Alarm	Display of Alarm: Generator low limit.
4610	High process limit	-	Info	- / Alarm	Display of Alarm: High process limit.
4611	Low process limit	-	Info	- / Alarm	Display of Alarm: Low process limit.
4613	High voltage limit	-	Info	- / Alarm	Display of Alarm: High voltage limit.
4612	Low voltage limit	-	Info	- / Alarm	Display of Alarm: Low voltage limit.
4614	Voltage range limit	-	Info	- / Alarm	Display of Alarm: Voltage range limit.
10093	System A AC wiring		Info	- / Alarm	Display of Alarm: System A AC wiring.
4615	Communica- tion error NW A	-	Info	- / Alarm	Display of Alarm: Communication error NW A.
4617	Missing member	-	Info	- / Alarm	Display of Alarm: Missing loadshare member.
4618	Centralized alarm	-	Info	- / Alarm	Display of Alarm: Centralized alarm.
4619	GCB open failure	-	Info	- / Alarm	Display of Alarm: GCB open failure.
4620	Deadbus clo- sure mis- match	-	Info	- / Alarm	Display of Alarm: Deadbus closure mismatch.
7770	System B mismatch	-	Info	- / Alarm	Display of Alarm: System B mismatch (connection plausibility check).
7777	Phase rota- tion mis- match	-	Info	- / Alarm	Display of Alarm: Phase rotation mismatch.
7787	Communica- tion error NW B	-	Info	- / Alarm	Display of Alarm: Communication error NW B
7792	Network A error		Info	- / Alarm	Display of Alarm: Network A error
7793	Network B error		Info	- / Alarm	Display of Alarm: Network B error
7794	Devices not matched		Info	- / Alarm	Display of Alarm: Devices do not matched
10093	Aux. Syst. B AC wiring		Info	- / Alarm	Display of Alarm: Auxiliary System B AC wiring.

Table 3-54: Parameter – control status monitor - alarms

System A Energy Counters

Cystc		, –	Juiitois		
ID	Parameter	CL	Setting range	Format	Description
2520	Syst. A pos. act. energy	-	Info	0.00 MWh	Counter for: System A positive active energy
2524	Syst. A neg. act. energy	-	Info	0.00 MWh	Counter for: System A negative active energy
2522	Syst. A pos. react. energy	-	Info	0.00 Mvarh	Counter for: System A positive reactive energy

Page 130/253 © Woodward

Manual 37947

MSLC-2XT - Master Synchronizer and Load Control

	Syst. A neg. react. energy	-	Info	0.00 Mvarh	Counter for: System A negative reactive energy
--	-------------------------------	---	------	---------------	--

Table 3-55: Parameter – control status monitor – System A energy counters

Communication Management

ID	Parameter	CL	Setting range	Format	Description
7791	Number of devices in system	-	Info	-	Counter for: Number of devices in the system

Table 3-56: Parameter – control status monitor – communication management

© Woodward Page 131/253

Menu 9 - Discrete Inputs / Discrete (Relay) Outputs

This menu contains the parameters for the discrete inputs, the discrete input source (hardware or communication interface) and the discrete outputs (relays) of the MSLC-2.

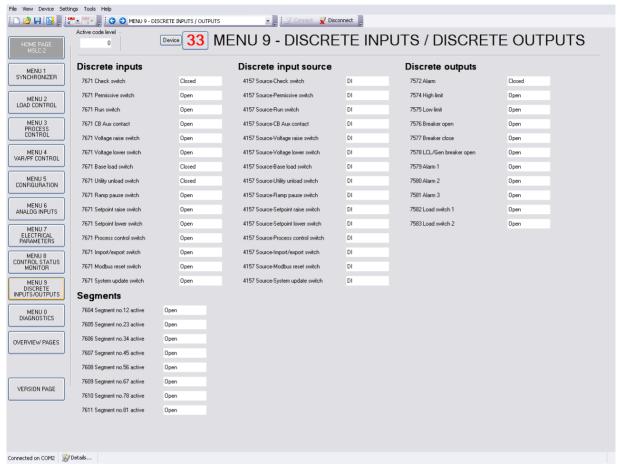


Figure 3-29: ToolKit – discrete inputs / relay outputs

Discrete Inputs

Parameter 7671 is bit masked starting with 1st bit (mask: 0001h) "Check switch", 2nd bit "Permissive switch", ...

ID	Parameter	CL	Setting range	Default	Description
7671	Check switch	-	Open / Closed	Open	Display of discrete input state for [DI 01]: Check.
7671	Permissive switch	1	Open / Closed	Open	Display of discrete input state for [DI 02]: Permissive.
7671	Run switch	-	Open / Closed	Open	Display of discrete input state for [DI 03]: Run.
7671	CB Aux contact	-	Open / Closed	Open	Display of discrete input state for [DI 04]: CB Aux.
7671	Voltage raise switch	-	Open / Closed	Open	Display of discrete input state for [DI 05]: Voltage raise
7671	Voltage lower switch	-	Open / Closed	Open	Display of discrete input state for [DI 06]: Voltage lower
7671	Base load switch	-	Open / Closed	Open	Display of discrete input state for [DI 07]: Base load.
7671	Utility unload	-	Open / Closed	Open	Display of discrete input state for [DI 08]: Utility unload.
7671	Ramp pause switch	-	Open / Closed	Open	Display of discrete input state for [DI 09]: Ramp pause.

Page 132/253 © Woodward

ID	Parameter	CL	Setting range	Default	Description
7671	Setpoint raise switch	-	Open / Closed	Open	Display of discrete input state for [DI 10]: Setpoint raise
7671	Setpoint lower switch	-	Open / Closed	Open	Display of discrete input state for [DI 11]: Setpoint lower
7671	Process control switch	-	Open / Closed	Open	Display of discrete input state for [DI 12]: Process control
7671	Import/ Ex- port switch	-	Open / Closed	Open	Display of discrete input state for [DI 21]: Imp./Exp. control
7671	Modbus re- set switch	-	Open / Closed	Open	Display of discrete input state for [DI 22]: Reset Modbus
7671	System up- date switch	-	Open / Closed	Open	Display of discrete input state for [DI 23]: System update switch

Table 3-57: Parameter – discrete inputs / outputs – discrete inputs

Discrete Input Source

Parameter 4157 is bit masked starting with 1st bit (mask: 0001h) "Source Check switch", 2nd bit "Source Permissive switch", ...

ID	Parameter	CL	Setting range	Default	Description
4157	Source- Check switch	-	DI / COM	DI	Indicates the source of "Check" switch either DI or communication interface.
4157	Source-Per- missive switch	-	DI / COM	DI	Indicates the source of "Permissive" switch either DI or communication interface.
4157	Source-Run switch	-	DI / COM	DI	Indicates the source of "Run" switch either DI or communication interface.
4157	Source-CB Aux contact	1	DI	DI	"CB Aux" fixed to DI 4.
4157	Source-Volt- age raise switch	-	DI / COM	DI	Indicates the source of "Voltage Raise" switch either DI or communication interface.
4157	Source-Volt- age lower switch	-	DI / COM	DI	Indicates the source of "Voltage Lower" switch either DI or communication interface.
4157	Source-Base load switch	-	DI / COM	DI	Indicates the source of "Base Load" switch either DI or communication interface.
4157	Source-Util- ity unload switch	1	DI / COM	DI	Indicates the source of "Utility Unload" switch either DI or communication interface.
4157	Source Ramp pause switch	-	DI / COM	DI	Indicates the source of "Ramp Pause" switch either DI or communication interface.
4157	Source-Set- point raise switch	-	DI / COM	DI	Indicates the source of "Setpoint Raise" switch either DI or communication interface.
4157	Source-Set- point lower switch	-	DI / COM	DI	Indicates the source of "Setpoint Lower" switch either DI or communication interface.
4157	Source-Pro- cess control switch	-	DI / COM	DI	Indicates the source of "Process Control" switch either DI or communication interface.
4157	Source-Im- port/Export switch	-	DI / COM	DI	Indicates the source of "Imp./Exp. Control" switch either DI or communication interface.

© Woodward Page 133/253

ID	Parameter	CL	Setting range	Default	Description
4157	Source Modbus re- set switch	-	DI	DI	Modbus reset fixed to DI 22.
4157	Source System up- date switch	1	DI / COM	DI	Indicates the source of "System update" switch either DI or communication interface.

Table 3-58: Parameter – discrete inputs / outputs – discrete input source

Discrete (Relay) Outputs

ID	Parameter	CL	Setting range	Default	Description
7572	Alarm	-	Open / Closed	Closed	Display of relay output state for [R 01]: Alarm.
7574	High limit	1	Open / Closed	Open	Display of relay output state for [R 03]: High limit.
7575	Low limit	1	Open / Closed	Open	Display of relay output state for [R 04]: Low limit.
7576	Breaker open	1	Open / Closed	Open	Display of relay output state for [R 05]: Breaker open.
7577	Breaker close	1	Open / Closed	Open	Display of relay output state for [R 06]: Breaker close.
7578	LCL/Gen breaker open	-	Open / Closed	Open	Display of relay output state for [R 07]: LCL/Gen breaker open.
7579	Alarm 1		Open / Closed	Open	Display of relay output state for [R 08]: Alarm 1
7580	Alarm 2		Open / Closed	Open	Display of relay output state for [R 09]: Alarm 2
7581	Alarm 3		Open / Closed	Open	Display of relay output state for [R 10]: Alarm 3.
7582	Load switch 1	1	Open / Closed	Open	Display of relay output state for [R 11]: Load switch 1.
7583	Load switch 2	1	Open / Closed	Open	Display of relay output state for [R 12]: Load switch 2.

Table 3-59: Parameter – discrete inputs / outputs – relay outputs

Segments

ID	Parameter	CL	Setting range	Default	Description
7604	Segment no .12 active	-	Open / Closed	Open	Display of discrete input state for [DI 13]: Segment no 12 active.
7605	Segment no .23 active	-	Open / Closed	Open	Display of discrete input state for [DI 14]: Segment no 23 active.
7606	Segment no .34 active	-	Open / Closed	Open	Display of discrete input state for [DI 15]: Segment no 34 active.
7607	Segment no .45 active	-	Open / Closed	Open	Display of discrete input state for [DI 16]: Segment no 45 active.
7608	Segment no .56 active	-	Open / Closed	Open	Display of discrete input state for [DI 17]: Segment no 56 active.
7609	Segment no .67 active	1	Open / Closed	Open	Display of discrete input state for [DI 18]: Segment no 67 active.
7610	Segment no .78 active	-	Open / Closed	Open	Display of discrete input state for [DI 19]: Segment no 78 active.
7611	Segment no .81 active	-	Open / Closed	Open	Display of discrete input state for [DI 20]: Segment no 81 active.
7671	Import /Export switch	-	Open / Closed	Open	Display of discrete input state for [DI 21]: Import/Export control.

Table 3-60: Parameter – discrete inputs / outputs – segments

Page 134/253 © Woodward

Menu 0 - Diagnostics

This menu contains the alarms that can be connected to output either for relays 8, 9 or 10.

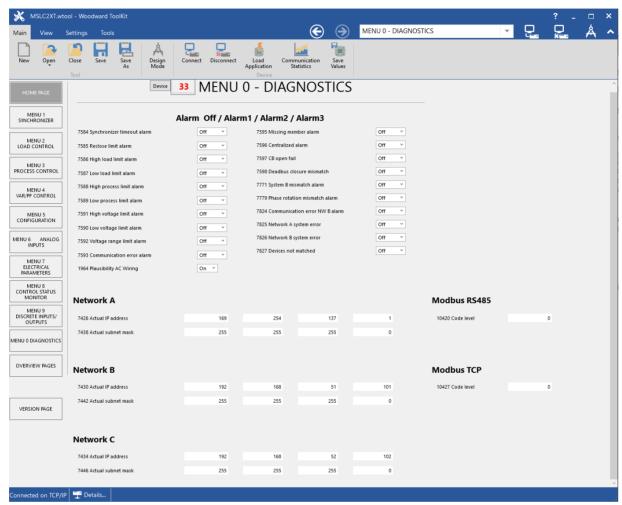


Figure 3-30: ToolKit - diagnostics

Set Alarm to Off / Alarm1 / Alarm2 / Alarm3

Each alarm can be set on relay 8 (Alarm 1), relay 9 (Alarm 2) or relay 10 (Alarm 3). Multiple parameters can be selected for the same alarm.

NOTE

Alarms 1, 2, and 3 can be used for monitoring only. Don't use alarm messages for protection control!

ID	Parameter	CL	Setting range	Default	Description
7584	Synchronizer timeout alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7585	Reclose limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7586	High load limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7587	Low load limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.

© Woodward Page 135/253

ID	Parameter	CL	Setting range	Default	Description
7588	High process limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7589	Low process limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7590	Low voltage limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7591	High voltage limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7592	Voltage range limit alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7593	Communica- tion error alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7595	Missing member alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7596	Centralized alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7597	CB open fail	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7598	Deadbus clo- sure mis- match	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7771	System B mismatch alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7779	Phase rota- tion mis- match alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7824	Communica- tion error NW B alarm	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7825	Network A system error	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7826	Network B system error	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
7827	Devices not match	2	Off / Alarm1 / Alarm2 / Alarm3	Off	Passing the alarm to relay Alarm 1, Alarm 2 or Alarm 3.
1964	Plausibility AC Wiring	2	On / Off	On	On: AC wiring monitoring is active Off: AC wiring monitoring not active (For details see "Plausiblity check of AC Wiring".)

Table 3-61: Parameter - diagnostics

Plausibility check of AC Wiring

The MSLC-2XT detects the frequency out of up to six voltages (L1-N, L2-N, L3-N, L1-L2, L2-L3 and L3-L1). The frequency measurement (of all System A and auxiliary System B) additionally checks the values on plausibility. With this monitoring the device can detect wrong wiring issues.

Page 136/253 © Woodward

Wrong Wiring Issue

It might occur that for example a generator frequency is measured even if the generator is not running. This can happen e.g. if PE (terminal 61) is not connected, the System A neutral connection is broken, and System B (terminals 38/40) is energized (with 1Ph2W connection). In this case a potential shift occurs which could lead to "ghostly" voltages at the System A (or System B, or Auxiliary system B) phase-neutral system. These voltages lead to a frequency measurement even if no voltage is detected in the generator phase-phase system.

The »Plausibility AC wiring « monitoring is introduced to indicate such situations at System A, and auxiliary System B measurement. These alarms are tripping if only "Phase- Phase" or only "Phase-Neutral" frequency is detected. If such an alarm ("System A AC wiring", or " Aux. Syst. B wiring" has tripped please check all "Phase-Phase" and "Phase-Neutral" voltages via Toolkit to get more information and check the AC wiring.

This »Plausibility AC wiring « monitoring function is only active if the wiring can provide "Phase-Phase" and "Phase-Neutral" values.

The plausibility monitoring offers one setting "1964 Plausibility AC Wiring" for System A and auxiliary System B measurement.

If at least one of these monitors has tripped, "4618 Centralized alarm" will become active and the corresponding dedicated alarm "10093 System A AC wiring" or "10095 Aux. Syst. B AC wiring" indicates "Alarm" at Menu 8.

© Woodward Page 137/253

Overview Pages

The MSLC-2 provides 2 overview pages showing information from up to 32 DSLC-2 and up to 16 MSLC-2.

LED Display for "System Status"

The system status of each device is displayed by a combination of LED color and the additional text beside "System status". Both together give the quick status overview of each device; the own device and all another devices in the network. In single mode network information comes from Network A only; using a redundant network system status display takes care for both networks Network A and Network B:

I ED color	Displayed toyt	Explanation			
LED color	Displayed text	Single mode	Redundant mode		
		Network A is working accordingly to the latest System Update.	Both networks A and B are work-ing accordingly to the latest System Update.		
Twinkling YELLOW BLACK	Only NW A	-/-	Only Network A is working. Communication error on Network B. This unit is suspected.		
Twinkling YELLOW BLACK	Only NW B	-/-	Only Network B is working. Communication error on Network A. This unit is suspected .		
YELLOW	Add device	The device is No Member according to the latest System Update. System update is required!	The device is no member according to the latest System Update. System update is required!		
YELLOW	Only NW A	-/-	Only Network A is working, Network B fails .		
YELLOW Only NW B		-/-	Only Network B is working, Network A fails.		
Twinkling	Unit not	Communication error on	Communication error on both		
RED BLACK	recognized	Network A. This unit is suspected .	Networks A and B. This unit is suspected .		
RED	Unit not recognized	Network A is not working according to the latest System Update. ("Missing Member")	Networks A and B are not working. But the latest System Update registered this device as a member. ("Missing Member")		
BLACK	Not installed	Network A is not working. The latest System Update registered this device as No Member. So the device is not installed .	Networks A and B are not working. The latest System Update registered this device as No Member. So the device is not installed .		

Table 3-62: System Status quick info at overview pages

See page 200 for more details.

Page 138/253 © Woodward

MSLC-2 Overview Page

The MSLC-2 overview informs about the conditions of the MSLC-2 number 33 to 48 connected to the network. This helps for commissioning a DSLC-2 / MSLC-2 system.

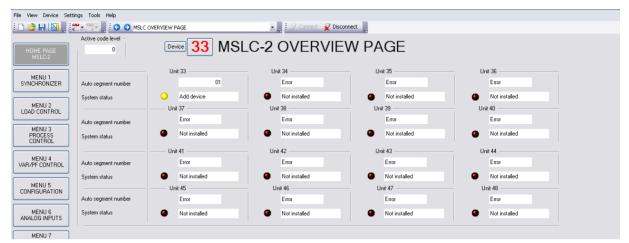


Figure 3-31: ToolKit - MSLC-2 overview page

ID	Parameter	CL	Setting range	Default	Description
	Auto segment number	-	1 to 8	-	This field indicates what each MSLC-2 recognizes to which segment number it is accorded to.
	System status	-	Unit available / Add device / Only NW A / Only NW B / Unit not recog- nized / Not installed	Not installed	Display if MSLC-2 unit 33 to 48 is available. This text and the illumination of the related LED together describe the device's status in the system. Refer to page 138 for details.

Table 3-63: Parameter – MSLC-2 overview page

© Woodward Page 139/253

DSLC-2 Overview Page

The DSLC-2 overview page 1 informs about the conditions of the DSLC-2 number 1 to 32 connected to the network. This helps for commissioning a DSLC-2 / MSLC-2 system.

Figure 3-32: ToolKit - DSLC-2 overview page

ID	Parameter	CL	Setting range	Default	Description
	Auto segment number	-	1 to 8	-	This field indicates what each DSLC-2 recognizes to which segment number it is accorded to.
	System status	-	Unit available / Add device / Only NW A / Only NW B / Unit not recog- nized / Not installed	Not installed	Display if DSLC-2 unit 1 to 32 is available. This text and the illumination of the related LED together describe the device's status in the system. Refer to page 138 for details.

Table 3-64: Parameter – DSLC-2 overview page

Page 140/253 © Woodward

Prestart Setup Procedure

Apply power to the MSLC-2 control. Verify that the MSLC-2 control passes its power up diagnostics by checking that self-test relay (terminal 41 / 42) is energized. If the unit fails see **Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden werden.** for instructions on getting service for the control. Connect the PC configuration software ToolKit via USB connection to the MSLC-2.

Configuration Menu

Select Menu 5 and adjust all measurement and system relevant configuration items. Set the following setpoints to their appropriate value as described in menu (setpoint) descriptions.

- 1. Operating Ranges
- 2. Transformer
- 3. System Settings

If you have an application with multiple units please check the device number (parameter 1702) of each device:

- The DSLC-2s getting device numbers from 1 to 32
- The MSLC-2s getting device numbers from 33 to 48

© Woodward Page 141/253

Prestart Segmenting Setup

The Menu 5 contains a configuration named Basic Segment Number (parameter 4544).

In the following cases the basic segment number is configured to the default value (1):

- There is only one single DSLC-2 in use
- There are several DSLC-2 / MSLC-2 installed, which work on a common bus, which cannot be separated. (only one segment available)

When the application contains switching elements between DSLC-2s and/or MSLC-2s proceed with following rules:

1. Draw an online diagram of your application with all generators, breakers and utility inputs. Then arrange the DSLC-2 (and MSLC-2) at the according breaker. Refer to Figure 3-33.

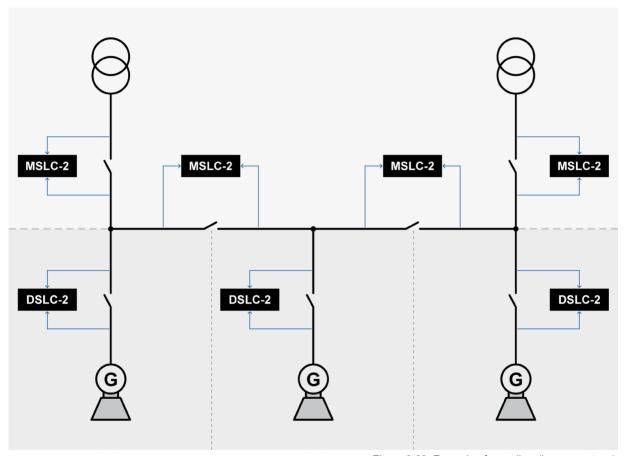


Figure 3-33: Example of an online diagram - step 1

- 2. Draw the measurement systems arrows between unit and bars (refer to Figure 3-34). Please consider following rules:
 - The DSLC-2 is placed at the generator breaker.
 - The MSLC-2 can be placed at the tie-breaker and at the utility breaker.
 - The MSLC-2 at the utility is doing the utility voltage measurement with System A measurement always.
 - The system B/Busbar measurement is connected to the busbar (no Aux. measurement in this sample).
 - The MSLC-2 at the tie-breaker usually has the system A on the left side and the system B on the right side.

Page 142/253 © Woodward

- 3. Draw the segment numbers into your online diagram (refer to Figure 3-34). Please consider following rules:
 - Begin on the left side with segment number 1.
 - The utility and the generators are not segments in sense of the DSLC-2 / MSLC-2 system.
 - The segment numbers have to follow a line and shall not branch. (Please refer there for to the chapter Network/System) for a better understanding.
- 4. Draw the device numbers of your units in your online diagram (refer to Figure 3-34).
 - Please consider following rules (for a better overview and understanding):
 - The DSLC-2 on the left side should begin with device number 1.
 - The DSLC-2s getting device numbers between 1 and 32.
 - The MSLC-2 on the left side should begin with device number 33.
 - The MSLC-2s getting device numbers between 33 and 48.
- 5. Draw the "CB Aux" feedbacks and segment connection feedbacks in your online diagram (refer to Figure 3-34).

Please consider following rules (for a better overview and understanding):

- The DSLC-2 getting usually only their generator breaker feedback.
- The MSLC-2 at the utility breaker getting usually only their utility breaker feedback.
- The MSLC-2 at the tie-breaker getting usually their tie-breaker feedback and parallel the according segment connector feedback.

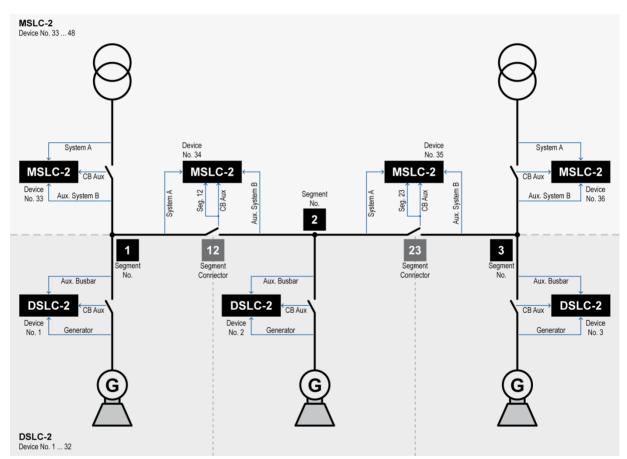


Figure 3-34: Example of an online diagram with segment numbers and segment connector feedbacks

© Woodward Page 143/253

- 6. Draw the switches and its networks for Ethernet channel A and B, if used; in your online diagram (refer to Figure 3-35).
 - Please consider the following rules (for a better overview and understanding):
 - Ethernet A is for the device interconnection. Each Ethernet channel A connection gets an own individual UDP TCP/IP address.
 - Ethernet B is for the PLC connection. Each Ethernet channel B connection gets an own individual Modbus TCP/IP address.

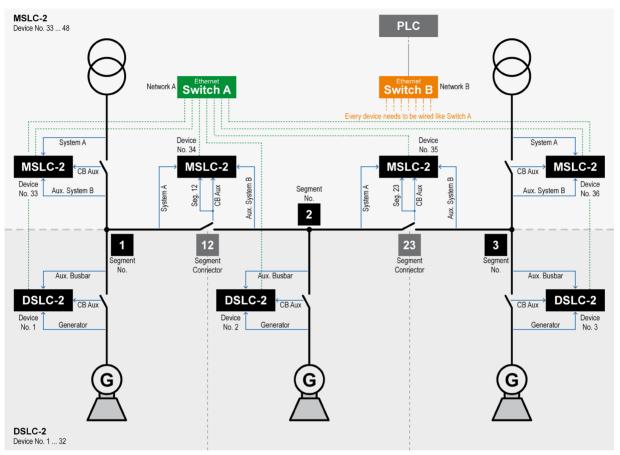


Figure 3-35: Example of an online diagram with according network

- 7. You can optionally draw the current measurement and the amount of phases in your online diagram (refer to Figure 3-36).
 - Please consider following rules (for a better overview and understanding):
 - The current measurement is always on system A.
 - The positive power flow for MSLC-2 power measurement is defined from A to B.
 - The busbar measurement can be 1-phase or 3-phase executed. Please remark this (not shown in diagram below) with one or three lines over the busbar / system B measurement.

Page 144/253 © Woodward

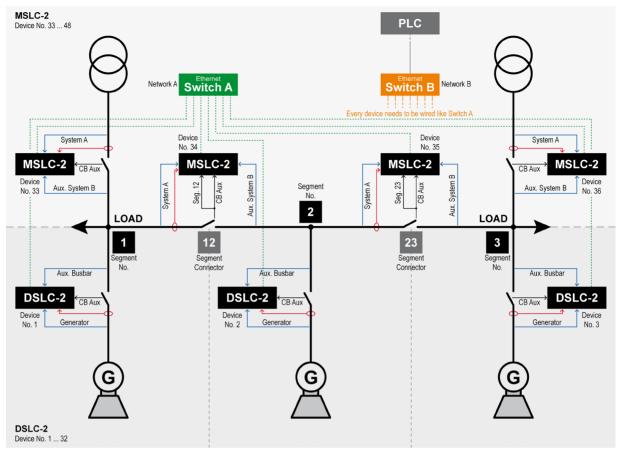


Figure 3-36: Example of an online diagram with all required information to setup the units

- 8. With the information out of the online diagram, following parameters shall be configurable now:
 - Menu 5 Device number (parameter 1702):
 - o Enter the according device number in the particular units
 - Menu 5 Basic segment number (parameter 4544):
 - DSLC-2: Enter the according segment number of the particular unit.
 - MSLC-2 at the utility breaker: Enter the according segment number of the particular unit.
 - MSLC-2 at the tie-breaker: Enter the according segment number which is resided on the left side (System A).
 - Setting in MSLC-2 Menu 5 Type of MSLC breaker (parameter 7628):
 - Enter "Utility" or "Tie".

Now you should have all segment related settings in all units. Please store your pictures for better trouble shooting later.

© Woodward Page 145/253

Prestart Synchronizer Setup

Set all synchronizer (Menu 1) setpoints according to the descriptions above and the work sheet. Leave unknown values, such as gain and stability, at their default values.

Prestart Load Control Setup

Set all load control (Menu 2) setpoints according to the descriptions above and the work sheet. Proportional load control mode should be used during initial setup of the DSLC-2 control. Set the unload trip setpoint to approximately 10% of rated load.

Prestart Process Control Setup

Set all process control (Menu 3) setpoints according to the descriptions above and the work sheet. If gain and stability values (process control integral gain / ... derivative ratio) are unknown, leave at their default values.

Prestart Var/Power Factor Control Setup

Set all var/power factor control (Menu 4) setpoints according to the descriptions above and the work sheet. Set *VAR PF control mode* (parameter 7558) to "Disabled" until doing the var/PF control adjustment section on page 156.

Page 146/253 © Woodward

MSLC-2 Control Adjustments

When the prestart setup procedures above have been completed, the MSLC-2 may be installed into the system and the following adjustment procedures must be followed. After the unit has been installed and before applying power to the PT and CT inputs, verify the following:

- 1. The MSLC-2s see the proper number of DSLC-2 and MSLC-2 controls on the network (see overview page DSLC-2 and MSLC-2 in ToolKit).
- 2. The DSLC-2s see the proper number of DSLC-2 and MSLC-2 controls on the network (see overview page DSLC-2 and MSLC-2 in ToolKit).
- 3. The MSLC-2 recognizes the synchronizer switch inputs (see Menu 9).
- 4. The synchronizer is in the "OFF" mode.

Calibration Check

Load the system up to a typical import/export level. Check Menu 7 to ensure that the MSLC-2 is sensing the proper voltages, currents, power levels and power factor. Power must measure positive when being imported from the utility. Use Figure 3- to help verify all measurements.

- Ensure that the MSLC-2 synchronizer mode is "Off" (Menu 8).
- Verify that the MSLC-2 sees the proper number of MSLC-2 / DSLC-2 controls (overview pages).
- Verify that the MSLC-2 shows active and reactive power flow in the right signing (Homepage).

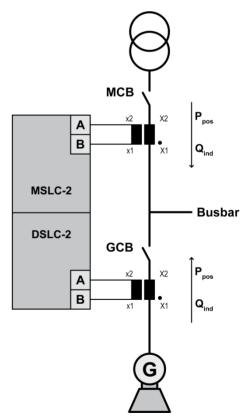


Figure 3-37: Power measurement

© Woodward Page 147/253

Synchronizer Adjustments

This section is for adjusting the synchronizer functions including procedures for phase matching and slip frequency synchronization. Note that dynamic adjustments for gain and stability will be different for each method. To assist in setup and adjustments, you can monitor synchronizer mode of operation on Homepage or Menu 8 and synchronizer mode and slip frequency and synchronoscope values on Menu 7.

Preliminary Synchronizer Adjustments

- 1. Set the Voltage matching setpoint (parameter 7513) to "Disabled".
- 2. Select Menu 1 and verify that the *Frequency synchronizer proportional gain* (parameter 4539) and *Frequency synchronizer integral gain* (parameter 4540) setpoints are set to their default values.
- 3. Set the maximum phase window (parameter 5703, parameter 5704) and maximum slip window (parameter 5701, parameter 5702) setpoints to the desired values or use the default values if unknown.
- 4. Set the ramp rate for the Digital Input Frequency setpoint raise and lower (parameter 4713, parameter 4714)
- 5. Set *Breaker delay* (parameter 5705) to the closure time specified by the breaker manufacturer. Add delay time for any interposing relays if required.
- 6. Set *CB close hold time* (parameter 3417) to the time desired for the MSLC-2 control to hold the breaker closure signal. This time should at least exceed the breaker delay time.
- 7. Set the close attempts (parameter 3419) setpoint to "1".
- 8. Set the Synchronizer timeout (parameter 3063) setpoint to "0".
- 9. Set Auto re-synchronize (parameter 7514) to "Disabled".

Proceed to the phase matching synchronizer or slip frequency synchronizer section as required.

Phase Matching Synchronizer

Do the following steps to setup the synchronizer dynamics for use as a phase matching synchronizer. For slip frequency synchronizing, see the procedure below. The MSLC-2 control indicates the phase angle with the Synchronoscope on the ToolKit Homepage (parameter 4639).

NOTE

The synchronoscope on the Homepage will show the right phase angle, when all electrical settings are correctly done and the wire connections to the unit are correct. Double check the phase angle across the breaker with a voltmeter or other phase testing device.

- 1. Set the Synchronization CB (parameter 5730) to "Phase matching".
- 2. Close the synchronizer "Check" mode switch.
- 3. With System A active (mainly utility) system B active (mainly generator bus), adjust the synchronizer proportional gain setpoint for stable control of the utility frequency as indicated by synchronoscope holding steady at zero phase.

NOTE

If the system (not the MSLC-2 control) synchronoscope does not lock close to zero phase, but at some other value (such as 30, 60, 180, 210, etc. degrees), verify system A and system B potential wiring to either the synchronoscope or MSLC-2 control.

DO NOT PROCEED WITH ANY ACTION RESULTING IN BREAKER CLOSURE UNTIL THE PROBLEM IS DETERMINED AND CORRECTED.

- 4. Turn the synchronizer mode to "Off" (open discrete inputs). Allow the phase to drift until the synchronoscope indicates approximately 150 degrees fast. It may be necessary to adjust the engine speed setting slightly fast to achieve the desired phase drift.
- 5. Turn the synchronizer mode to "Check". The synchronizer should pull the generator smoothly

Page 148/253 © Woodward

- into phase lock. If the synchronizer action is too slow, increase *Frequency synchronizer pro- portional gain* (parameter 4539) by a factor of two. If increasing sync gain results in unstable operation, reduce the value by at least one-half and proceed to step 6. Otherwise, repeat steps 4 and 5.
- 6. Do step 4 and then turn the synchronizer mode to "Check". The synchronizer should pull the generator smoothly into phase lock. If the synchronizer is too slow or "over-damped", increase integral gain

 (parameter 4540) by a factor of two to decrease damping and increase sync proportional gain.
 - (parameter 4540) by a factor of two to decrease damping and increase sync proportional gain by a factor of two. If the synchronizer is too fast or "under-damped" as indicated by excessive overshoot of zero phase when pulling in, decrease sync proportional gain by a factor of two and decrease integral gain by a factor of two to increase damping.
- 7. Repeat steps 4, 5 and 6, with smaller adjustment steps until satisfactory performance is obtained.
- 8. Turn the synchronizer mode to "Off". Allow the phase to drift until the synchronoscope indicates approximately 150 degrees slow. It may be necessary to adjust the engine speed setting slightly slow to achieve the phase drift. Repeat steps 5 and 6 if necessary to get the desired performance.
- Verify synchronizer performance under all expected operating conditions, such as synchronizing at higher or lower speeds.
- 10. If voltage matching is to be used, do the setup in the voltage matching section below.

Proceed to final synchronizer setup.

Slip Frequency Synchronizer

Do the following steps to setup the synchronizer dynamics for use as a slip frequency synchronizer.

- 1. Complete the phase matching synchronizer setup before continuing.
- 2. Turn the synchronizer mode to "Off". Set the *Slip frequency setpoint offset* (parameter 4712) to the desired slip rate. Set engine speed slightly slow.
- 3. Turn the synchronizer mode to "Check". The synchronizer should drive engine speed so that phase rotation is smooth and at the correct rate as indicated on a synchronoscope or by observing the slip frequency value on Menu 7 (parameter 4640). If the synchronizer is too slow to react when switched from off to check mode, increase *Frequency synchronizer proportional gain* (parameter 4539) by a factor of two. If the synchronizer action is too aggressive when switched to check mode, reduce the sync proportional gain by half of what your last adjustment.

Example:

- If you moved from a proportional gain of 1 to 2, reduce to 1.5. Repeat until the synchronizer controls the system A at your desired rate.
- 4. Observe the smoothness of phase rotation. If a slow hunt is observed, as indicated by slowing and speeding up of the synchronoscope during rotation, increase *Frequency synchronizer integral gain* (parameter 4540) by a factor of two and repeat step 3. If rapid changes in slip frequency occur, decrease sync integral gain.
- 5. Repeat steps 3 and 4 with smaller adjustment steps until satisfactory performance is obtained. Note that it may not be possible to remove all slow hunting in slip frequency and this will not adversely affect synchronization.
- 6. Verify synchronizer performance under all expected operating conditions, such as synchronizing from higher or lower speeds.
- 7. If voltage matching or the var/PF control is to be used, do the setup in the voltage matching adjustment section below.

Proceed with final synchronizer setup.

© Woodward Page 149/253

Final Synchronizer Setup

- 1. Open the circuit breaker to disconnect the system A (usually mains) from system B.
- 2. Set close attempts (parameter 3419) to the desired number of times the synchronizer should attempt to close the circuit breaker. Set to "1" if only one close attempt should be made.
- 3. Set *Reclose delay* (parameter 4534) to the desired interval between close attempts. This should be greater than the time required to recharge the circuit breaker arming mechanism.
- 4. If an alarm is desired when the maximum close attempts has been reached, set sync reclose alarm to "Enabled".
- 5. Set the *Synchronizer timeout* (parameter 3063) to the maximum number of seconds the synchronizer should attempt to achieve synchronization. Set to "0" for no timeout.
- 6. If an alarm is desired when the sync timeout interval expires, set the *Synchronizer timeout alarm*
 - (parameter 7557) setpoint to "Enabled".
- 7. If it is desired to automatically attempt to reclose the circuit breaker on loss of synchronization (CB Aux opens after a successful closure has been accomplished), set the *Auto re-synchronize* (parameter 7514) setpoint to "Enabled". If set to "Disabled", the synchronizer will enter an auto-off mode when synchronization is obtained. It will be necessary to set the synchronizer mode switch to "Off" and back to the desired operating mode to restart the synchronizer.

This completes the MSLC-2 control synchronizer setup.

Page 150/253 © Woodward

Voltage Matching Adjustments

The following steps will verify the correct operation of the synchronizer voltage matching function. With the breaker open and at least one generator on line, momentarily raise and lower the voltage on the local generator bus.

NOTE

Individual DSLC-2 controls must be setup for proper voltage regulator control prior to adjusting the MSLC-2 control (See the DSLC-2 manual).

Preliminary Voltage Matching Setup

- 1. Select Menu 1 and set the Voltage matching (parameter 7513) setpoint to "Enabled".
- 2. Select Menu 7 and display both system A and system B voltages.
- 3. With the synchronizer "Off", manually raise the local bus (system B) voltage until it is approximately 5% higher than the utility voltage.
- 4. Set the synchronizer mode to "Check". The MSLC-2 should adjust the local bus voltage until it is within the voltage window selected in Menu 1.
- 5. If the voltage cycles through the window without settling into it, use the Voltage synchronizer proportional gain (parameter 5610) and integral gain to obtain the response you want. Lowering these values will slow the response. It might be that the DSLC-2s will have to be adjusted to obtain the response needed.
- 6. Set the synchronizer to "Off", manually lower the local bus voltage until it is approximately 5% lower than the utility voltage.
- 7. Set the synchronizer mode to "Check". The MSLC-2 should adjust the local bus voltage until it is within the voltage window selected in Menu 1.

NOTE

If the slip frequency reference is set to zero, the voltage window is ± the setpoint chosen in Menu 1. If the slip frequency reference is set to a negative or slow slip, the voltage window is such that the local bus voltage must be less than the utility voltage. Conversely, if the slip frequency reference is set to a positive or fast slip, the voltage window is such that the local bus voltage must be greater than the utility voltage. This ensures that the initial flow of reactive power is in the same direction as the initial flow of real power.

Final Voltage Matching Setup

- 1. Set the voltage high/low limits in Menu 4 to their desired values.
- 2. Enable the voltage alarms and voltage switches in Menu 4 if it is desired to activate the alarm or the high/low limit relay drivers upon exceeding a setpoint.

© Woodward Page 151/253

Load Control Adjustment

This section contains the instructions for setup of the MSLC-2 load control. Set all load control setpoints (Menu 2) according to the descriptions above and the work sheet. The Homepage or Menu 8 displays the load control mode, import/export reference and load command outputs are provided to assist in setup and verification of correct operation.

NOTE

The load control is only possilbe if the DSLCs can listen to the MSLC and does not operate in Droop mode (DI Droop switch or Droop Missing member).

Base Load Mode Setup

The base load mode is used when manual control of the operating generators is required, or whenever the generators are desired to be maintained at a set percentage of their rated load without regard to plant loading or import/export levels.

- Adjust the setpoints in Menu 2 as described above. Set the parameter Load control setpoint source
- (parameter 7634) to "Internal". Check that the DIs setpoint raise and lower are not energized.
- 2. Switch the MSLC-2 in base load master control. This is done by energizing the DI "Base Load" and the "CB Aux".
- 3. Break the parallel between the local bus (system A) and the utility (system B). Place at least one generator in isochronous load sharing (isolated run).
- 4. Watch the *Load control mode* field (parameter 4603) in the Homepage. Re-synchronize and parallel the local bus (system B) to the utility (system A). Verify that, when the breaker at the MSLC-2 closes, the load command assumes the value of system load immediately prior to paralleling.
- 5. Temporarily issue a lower setpoint command and then a raise setpoint command. Verify that the load command changes appropriately and that the engines running in base load respond appropriately. You can watch in the Homepage the setpoint load level going down to the DSLC-2s (parameter 4629).

Remote Base Load

Do the following steps if the analog *Remote load reference input* (parameter 7738) is used in base load control.

- 1. As a basic do the base load mode setup described above.
- 2. The value of the remote input is to configure and can be viewed in Menu 6. Before you start the engine check over the displaying field in Menu 6 (parameter 7738) if the analog input is right transformed in a base load reference value in kW.
- 3. Switch the MSLC-2 in base load master control. This is done by energizing the DI "Base Load".
- 4. Synchronize and parallel the local bus (system B) to the utility (system A) in the base load mode. Adjust the signal input to a level different from the present base load level.
- 5. Close both the raise and lower setpoint contacts to select the remote mode. The *Load control mode* (parameter 4603) in Menu 8 or in the Homepage should indicate base load and the load command should ramp to the specified level.
- 6. Raise and lower the analog signal. The load will ramp at the rates chosen in Menu 2 load and unload ramp rates. These rates may be adjusted to achieve satisfactory performance.
- 7. Open the raise and lower setpoint contacts. The *Load control mode* (parameter 4603) should indicate base load and the control remains at the last base load level chosen by the analog input.

This completes the remote base load reference setup procedure.

Page 152/253 © Woodward

Import/Export Mode Setup

- 1. As a basic do the base load mode setup described above.
- 2. An important assumption for setup this mode is the right connection of the CT's of the MSLC-2. Be sure that incoming real power (power flow from system A to system B) is displayed positive (see Homepage) and incoming lagging reactive power is displayed positive as well. Do not proceed if you have not clarified the right measurement.
- 3. Check Menu 2 setpoints for *Import/export control proportional gain* (parameter 5510), *Import/export control integral gain* (parameter 5511), *and Import/export control derivative ratio* (parameter 5512) whether they are adjusted to their default values.
- 4. Adjust the setpoints in Menu 2 as described in the parameter setup chapter above. Set the parameter *Load control setpoint source* (parameter 7634) to "Internal". Check that the DI's setpoint raise and lower are not energized. Configure an import/export reference (parameter 7717), positive value is importing power from mains, negative value is exporting power to mains.

NOTE

Do not chose an export level if it is not allowed by the utility.

- 5. Switch the MSLC-2 in import/export load master control. This is done by energizing the DI "Import/Export Control".
- 6. Break the parallel between the local bus (system A) and the utility (system B). Place at least one generator in isochronous load sharing.
- 7. Re-synchronize and parallel the local bus (system B) to the utility (system A). Verify that, when the breaker at the MSLC-2 closes, the load command assumes the value of system load immediately prior to paralleling. The control will ramp the *Setpoint load level* (parameter 4629) output until the import/export level is within its target.
- 8. If the import/export control is unstable when taking control, decrease the import/export proportional gain to achieve stability. If the chosen import/export level is not obtainable within the 0 to 100% load command range, the control will stop at 0% or 100%. If a slow hunt is observed or excessive overshoot of the export/import value occurs, decrease the process integral gain.
- Temporarily issue a lower setpoint command and then a raise setpoint command. Verify that
 the import/export reference changes appropriately and that the running engines respond appropriately. You can watch in the Homepage the Setpoint load level (parameter 4629) decreasing to the DSLC-2s.

This completes the import/export setup.

Remote Import/Export Setup

Do the following steps if analog remote load reference input is to be used. The value of the remote input is configured and viewed in Menu 6.

- 1. As a basic do the import/export load mode setup described above.
- 2. Set the scaling of the analog signal according to the instructions of the Menu 6. The remote load reference signal will be interpreted as an import/export load reference when the DI import/export control is given.
- 3. Close both the raise and lower setpoint contacts to select the remote mode. The load control mode in Menu 8 or the Homepage should indicate import/export remote and the load command of the MSLC-2 to DSLC-2 ramps to the needed level.
- 4. Raise and lower the analog signal. The load will ramp at the rates chosen in Menu 2 load and unload ramp rates. These rates may be adjusted to achieve satisfactory performance. Open the raise and lower setpoint contacts the load control mode indicates import/export control and the control keeps the last import/export level.

This completes the remote import/export reference setup procedure.

© Woodward Page 153/253

Final Load Control Setup

- 1. Set Menu 2 Load ramp rate (parameter 4700) and *Unload ramp rate* (parameter 4524) to desired values.
- 2. Set Raise load rate (parameter 4515) and Lower load rate (parameter 4516) to desired values.
- 3. Set the *Utility unload trip* (parameter 4506) and *Generator unload trip* (parameter 3125) levels to their desired values.
- 4. The import real load can be monitored by the high load Limit PU (pick up) and DO (drop out) setpoints. The settings are related on a rated power System A (parameter 1752).
- 5. The export real load can be monitored by the low load limit PU (pick up) and DO (drop out) set-points. The settings are related on a rated power at the interchange point (parameter 1752).
- 6. If it is desired that the alarm output *High load limit* (parameter 4608) alarm is activated when load reaches the high limit PU, set the high load limit alarm setpoint to "Enabled". The alarm will be automatically cleared when load drops below the high load limit DO switch point.
- 7. If it is desired that the alarm output *Low load limit* (parameter 4609) alarm is activated when load reaches the low limit PU, set the low load limit alarm setpoint to "Enabled". The alarm will be automatically cleared when load increases to above the low load limit DO switch point.
- 8. If it is desired that the high and low limit switches also activate the "High Limit" and "Low Limit" relays, set the *Load limit switch* (parameter 7506) setpoint to "Enabled".
- 9. Set the load switch PU and load switch DO setpoints to their desired operating levels.

Page 154/253 © Woodward

Process Control Adjustment

This section contains instructions for setup of the MSLC-2 process control. Menu 6 provides the setting for the process input signal and the according engineering units. Menu 6 and the Homepage displays the resulting real signal in percentage and in engineering units. Menu 8 shows the process control setpoint in percentage. The Homepage displays the setpoint process control in percentage and engineering units.

- 1. Configure in Menu 6 the *Process signal input* (parameter 7727) according to the chapter setup description Menu 6 in this manual. Don't forget to scale engineering units according to the real process signal. This is the base that the process control reference signal can be interpreted.
- 2. Check Menu 3 setpoints for *Process control proportional gain* (parameter 4500), *Process control integral gain* (parameter 4501), *Process control derivative ratio* (parameter 4502) and *Process filter* (parameter 4509) whether they are adjusted to their default values.
- 3. Set Menu 3 *Process control action* (parameter 7559) to "Direct" or "Indirect" as required for the process. If increasing load also increases the process input signal level, use "Direct". If increasing load decreases the process input signal level, use "Indirect".
- 4. Set the internal *Process reference* (parameter 7737) setpoint Menu 3 to a value requiring approximately 50% load to maintain the process signal level. If the required process reference is not known at start-up, operate the MSLC-2 in base load mode. Use the raise and lower setpoint inputs to adjust the load until the desired process level is obtained. Observe the process input in Menu 6 or the Homepage to determine the required process reference value.
- 5. Close the process switch. Select "Run" on the MSLC-2 to parallel the local bus with the utility. The MSLC-2 will ramp into process control.
- 6. If the process control is unstable when taking control, decrease the *Process control proportional gain* to achieve stability. If decreasing *Process control proportional gain* (parameter 4500) increases instability, increase *Process control integral gain* (parameter 4501). If the process control gain is too slow, increase the *Process control proportional gain* (parameter 4500) by a factor of two. If a slow hunt is observed or excessive overshoot of the process reference settings occurs, increase the process integral gain by a factor of two.
- 7. In systems experiencing rapid fluctuations of the process input, increasing the process filter will provide a slower but more stable response.
- 8. Introduce *Process droop* (parameter 4508) if required.
- 9. The real process value can be monitored by the *Process high limit PU* (parameter 4510) and DO setpoints to issue an alarm.
- 10. The real process value can be monitored by the *Process low limit PU* (parameter 4513) and DO setpoints to issue an alarm.
- 11. If it is desired that the alarm output *High process limi*t (parameter 4610) alarm is set when the process input reaches the *Process high limit PU* (parameter 4510), set the *Process high limit alarm* (parameter 7500) setpoint to "Enabled". The alarm will be automatically cleared when the process input level drops below the *Process high limit DO* (parameter 4511) switch point.
- 12. If it is desired that the alarm output *Low process limit alarm* (parameter 7589) is set when the process input reaches the *Process low limit PU* (parameter 4513), set the *Process low limit alarm* (parameter 7501) setpoint to "Enabled". The alarm will be automatically cleared when the process input increases to a level above the *Process low limit DO* (parameter 4514) switch point.
- 13. If it is desired that the high and low limit switches also activate the "High Limit" and "Low Limit" relays, set the *Process switches* (parameter 7502) setpoint to "Enabled".

This completes setup and adjustment of the MSLC-2 process control function.

© Woodward Page 155/253

Var/PF Control Adjustment

This section describes the setup and adjustment of the MSLC-2 voltage/var/PF control functions. The voltage control is used in case of voltage matching for the synchronizer. The var/PF control is used, if the DSLC-2 / MSLC-2 system runs parallel to the utility. The values of kvars and average power factor are available in Menu 7 or the Homepage.

NOTE

The VAR/PF control is only possible if the DSLCs can listen to the MSLC and does not operate in Droop mode (DI Droop switch or Droop Missing member).

NOTE

Var/PF control effectiveness depends on var/PF control in the DSLC-2s. Because of that commission the DSLC-2 var/PF control first.

- 1. Verify that the voltage matching adjustments above have been done.
- Select Menu 4 and set VAR control proportional gain (parameter 5613), VAR control integral gain (parameter 5614) and VAR control derivative ratio (parameter 5615) to their default values.

Constant Generator Power Factor Setup

The MSLC-2 can send a constant generator power factor setpoint to the DSLC-2s. The power factor reference is configured in Menu 4 (parameter 5621). The constant generator power factor will be executed, if:

- The MSLC-2 runs in base load mode OR
 - When in Base load mode, the MSLC-2 can only operate in the constant generator PF mode.
- The MSLC-2 runs in export/import mode and the VAR PF control mode (parameter 7558) in Menu 4 is configured to "Constant Generator PF".
- 1. Set the *VAR control setpoint source* (parameter 7635) to "Internal". Set the desired constant generator power factor reference in Menu 4 (parameter 5621).
- 2. Run the DSLC-2 / MSLC-2 system parallel to the utility. For test purposes change between different constant generator power factors to validate the functionality. When the power factor at the DSLC-2 begins to swing check the settings at the DSLC-2s.

This completes setup of the MSLC-2 constant generator power factor function.

Page 156/253 © Woodward

PF Control at the Utility - Setup

The MSLC-2 can regulate a power factor at the interchange point. A PID control compares the power factor reference with the real value and sends a reactive load setpoint to the DSLC-2 to run the error signal to zero. Whatever is sent for reactive load level to the DSLC-2s, the DSLC-2 allows not more than 10% rated vars for leading and do not allow more than 100% rated vars for lagging.

- 1. Set the *VAR control setpoint source* (parameter 7635) to "Internal". Set the *VAR PF control mode* (parameter 7558) to "PF Control". Set the desired *Power factor reference* (parameter 5620) in Menu 4.
- 2. An important assumption for setup is the right connection of the CTs of the MSLC-2. Be sure that incoming power is displayed positive (refer to ToolKit Homepage) and incoming lagging reactive power is displayed positive as well. Do not proceed if you have not clarified the right measurement.
- 3. Check Menu 4 setpoints for VAR control proportional gain (parameter 5613), VAR control integral gain (parameter 5614), and VAR control derivative ratio (parameter 5615) whether they are adjusted to their default values.
- 4. Switch to base load at the MSLC-2.
- 5. Run the DSLC-2 / MSLC-2 system parallel to the utility. For test purposes change between different setpoints for the constant generator power factor reference. When the power factor at the DSLC-2 begins to swing check the settings at the DSLC-2s.
- 6. Run a base load and a generator constant power factor with the DSLC-2 which gives the generators the capability to run the desired power factor at the interchange point. Prepare an import/export control reference which can be maintained by the engines.

NOTE

Do not chose a power factor level if it is not allowed by the utility.

- Check that the DIs "Voltage Lower" and "Voltage Raise" are not energized and switch the MSLC-2 in import/export load master control. This is actively done by energizing the DI "Imp./Exp. Control"
- 8. The MSLC-2 should influence the reactive load of the DSLC-2 so that the desired power factor is matched at the utility. If the control action is too fast decrease *VAR control proportional gain* (parameter 5613). If the control action is too slow to bring the PF into control, increase the *VAR control proportional gain* (parameter 5613). If overshoot of the setpoint occurs, decrease *VAR control integral gain* (parameter 5614).
- 9. Check the regulating behavior by switching several times between base load mode and import/export control mode and watch the guidance of the power factor by the MSLC-2.

This completes setup of the PF control at the interchange point.

Remote PF Control at the Utility - Setup

Do the following steps if the analog "Reactive Load" input signal is used. The analog signal can only be used for the power factor setpoint at the utility.

- 1. First do the "PF Control at the Utility Setup", before you proceed with this topic.
- 2. The value of the remote input needs to be configured and can be viewed in Menu 6. Before you start the engine check over the displaying field in Menu 6 (parameter 7718) if the analog input is right transformed in a power factor reference value.
- 3. Set the VAR control setpoint source (parameter 7635) to "Internal".
- 4. The power factor reference will be accepted from the MSLC-2 when the "Voltage raise" and "Voltage lower" commands are given and the MSLC-2 runs in export/import mode and the VAR PF control mode (parameter 7558) in Menu 4 is configured to "PF Control".
- 5. Run the DSLC-2 / MSLC-2 system parallel to the utility. For test purposes change the setpoint over the analog input to validate the functionality. When the power factor at the utility begins to swing check the PID settings in the MSLC-2.

This completes setup of the remote PF control at the interchange point.

© Woodward Page 157/253

Var Control at the Utility - Setup

The MSLC-2 can regulate kvars at the interchange point. A PID control compares the kvar reference with the real value and sends a reactive load setpoint to the DSLC-2 to run the error signal to zero. Whatever is sent for reactive load level to the DSLC-2s, the DSLC-2 allows not more than 10% rated vars for leading and do not allow more than 100% rated vars for lagging.

- 1. First do the "PF Control at the Utility Setup", before you proceed with the vars.
- 2. Set the *VAR control setpoint source* (parameter 7635) to "Internal". Set the *VAR PF control mode* (parameter 7558) to "VAR Control".
- 3. Set the desired *KVAR reference* (parameter 7723) in Menu 4. For a correct and universal regulating configure the rated kvar for the MSLC-2 system. If unknown take the same amount as for the rated active power (parameter 1752).
- 4. An important assumption for setup this mode is the right connection of the CTs of the MSLC-2. Be sure that incoming power is displayed positive (refer to ToolKit Homepage) and incoming lagging reactive power is displayed positive as well. Do not proceed if you have not clarified the right measurement.
- 5. Check Menu 4 setpoints for VAR control proportional gain (parameter 5613), VAR control integral gain (parameter 5614), and VAR control derivative ratio (parameter 5615) whether they are adjusted to their default values.
- 6. Switch to base load at the MSLC-2. Run the DSLC-2 / MSLC-2 system parallel to the utility. For test purposes change between different setpoints for the constant generator power factor reference. When the power factor at the DSLC-2 begins to swing check the settings at the DSLC-2s.
- 7. Run a base load and a generator constant power factor with the DSLC-2 which gives the generators the capability to run the desired kvars at the interchange point. Prepare an import/export control reference which can be maintained by the engines.

NOTE

Do not chose a var level if it is not allowed by the utility.

- Check that the DIs "Voltage Lower" and "Voltage Raise" are not energized and switch the MSLC-2 in import/export load master control. This is actively done by energizing the DI "Imp./Exp. Control".
- 9. At next the MSLC-2 influences the reactive load of the DSLC-2 so that the desired kvars are matched at the utility. If the control action is too fast decrease *VAR control proportional gain* (parameter 5613). If the control action is too slow to bring the var into control, increase the *VAR control proportional gain* (parameter 5613). If overshoot of the setpoint occurs, decrease *VAR control integral gain* (parameter 5614).
- 10. Check the regulating behavior by switching several times between base load mode and import/export control mode and watch the guidance of the kvars by the MSLC-2.

This completes var control adjustments.

Page 158/253 © Woodward

Chapter 4. Synchronizer Description

Introduction

Synchronization is the matching of the output voltage wave form of one synchronous alternating current electrical generator with the voltage wave form of another alternating current electrical system. For the two systems to be synchronized and connected in parallel, five conditions must be considered:

- The number of phases in each system
- The direction of rotation of the phases
- The voltage amplitudes of the two systems
- · The frequencies of the two systems
- · The phase angle of the voltage of the two systems

The first two conditions are determined when the equipment is specified, installed and wired. The synchronizer matches the remaining conditions (voltage, frequency and phase) before the paralleling breakers are closed.

Functional Description

This section describes how generator and bus matching occurs and how all conditions are verified by the synchronizer functions. The examples shown in chapter "Measurement Connections (Examples)" on page 161 demonstrate the AC measurement connection and configuration of the MSLC-2 system.

Operating Modes

The operation of the synchronizer is determined by the discrete inputs shown in Figure 4-1. The synchronizer modes are *Off, Check, Permissive, Run*, and *Manual*. When all 3 discrete inputs are open (De-Energized) you are in the *Off* mode. *Manual* mode is achieved by selecting both the Check and Permissive inputs. In *Manual* mode you will use the setpoint raise and lower inputs to affect the *frequency control setpoint* (5500) in the DSLC-2. The voltage raise and lower inputs will affect the *voltage control setpoint* (5600) in the DSLC-2.

Run mode allows normal synchronizer operation and breaker closure signals. When the specified closure signal time has elapsed or the CB (circuit breaker) aux contact closure signal is received at DI 4 (terminal 70), the synchronizer is disabled. The synchronizer may optionally be reset automatically when the generator is disconnected from the bus.

The breaker close command follows the *CB close hold time* (3417) setting. It does not stay closed for the complete time you are within the proper limits.

Check mode allows normal synchronizing and voltage matching, but does not issue a breaker closure signal.

Permissive mode enables the synch-check function for proper synchronization, but synchronizer operation does not affect the engine's speed or generator voltage. If phase, frequency and voltage are within proper limits, the synchronizer issues the breaker closure command.

The breaker close command is always a "Constant" signal:

The breaker close command remains enabled as long as the synchronization conditions are matched.

NOTE

In case of power loss, the MCB breaker must be opened manually, because the MSLC-2s output cannot be energized.

© Woodward Page 159/253

The MSLC-2 is no protective device. In case of overvoltage the breaker has to be opened externally.

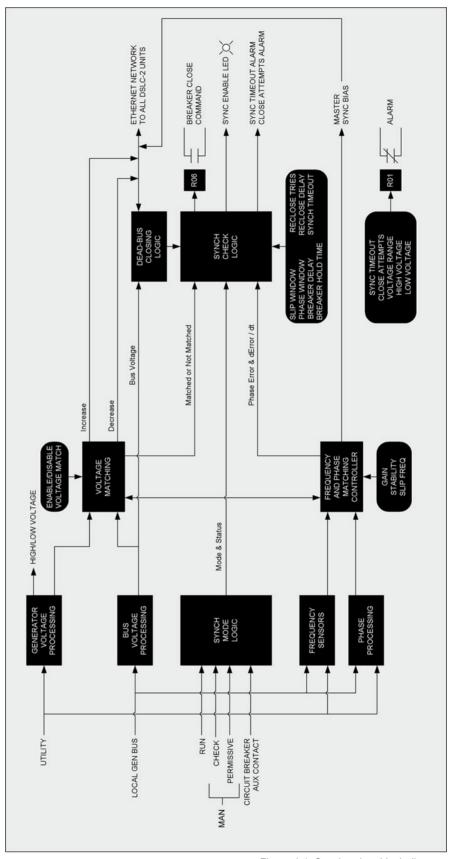


Figure 4-1: Synchronizer block diagram

Page 160/253 © Woodward

Measurement Connections (Examples)

Low Voltage System 480 V / 277 V - 3-Phase with Neutral

- Phase rotation clockwise
- System A measurement: 3-Phase with neutral
- System B measurement : L1-L2 ("Phase phase")

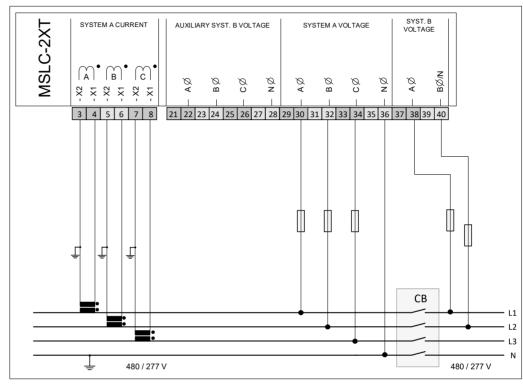


Figure 4-2: Low voltage system 480 V / 277 V - 3-phase with neutral

Configuration	Measurement	Voltage Monitoring
Menu 5 System A rated voltage (parameter 1766): "480 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W" System B rated voltage (parameter 1781): "480 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "No" Transformer System A PT primary rated voltage (parameter 1801): "480 V" System A PT secondary rated volt. (parameter 1804): "480 V" System B PT primary rated voltage (parameter 1804): "480 V" System B PT secondary rated volt. (parameter 1803): "480 V"	 System A [V] L1 System A [V] L2 System A [V] L3 System A [V] L1-L2 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KW] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [Hz] System A [Hz] System B [V] L1-L2 System B [Hz] Phase-Angle System B-A 	System A [V] L1 System A [V] L2 System A [V] L3 OR System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1

Table 4-1: Low voltage system 480 V / 277 V - 3-phase with neutral

© Woodward Page 161/253

- Phase rotation clockwise
- System A measurement: 3-Phase with neutral
- System B measurement : L1-N ("Phase neutral")

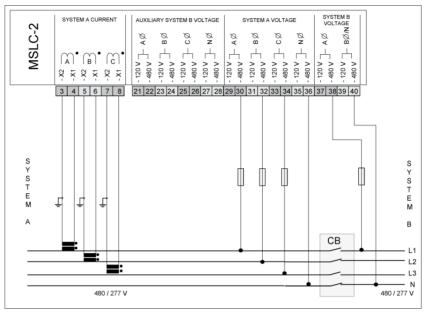


Figure 4-3: Low voltage system 480 V / 277 V - 3-phase with neutral

Configuration	Measurement	Voltage Monitoring
Menu 5 System A rated voltage (parameter 1766): "480 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W" System B rated voltage (parameter 1781): "277 V" 1Ph2W voltage input (parameter 1858): "Phase – neutral" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "No" Transformer System A PT primary rated voltage (parameter 1801): "480 V" System A PT secondary rated voltage (parameter 1804): "480 V" System B PT primary rated voltage (parameter 1804): "480 V" System B PT secondary rated volt. (parameter 1803): "480 V"	 System A [V] L1 System A [V] L2 System A [V] L3 System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KVA] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L2 System A [Hz] System A Phase rotation System B [V] L1 System B [Hz] Phase-Angle System B-A 	System A [V] L1 System A [V] L2 System A [V] L3 OR System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1

Table 4-2: Low voltage system 480 V / 277 V – 3-phase with neutral

Page 162/253 © Woodward

Low Voltage System 480 V - 3-Phase with Neutral

- Phase rotation clockwise
- System A measurement: 3-Phase with neutral
- System B measurement : L1-N ("Phase neutral")
- Auxiliary system B busbar measurement: 3-Phase with neutral (connection plausibility checked, see page 37)

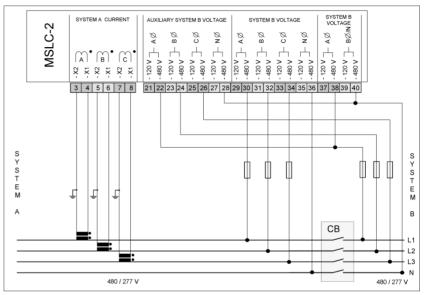


Figure 4-4: Low voltage system 480 V - 3-phase with neutral

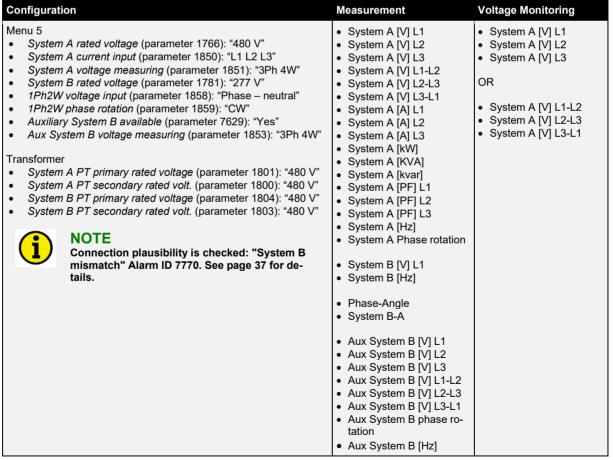


Table 4-3: Low voltage system 480 V – 3-phase with neutral

© Woodward Page 163/253

Low Voltage System 600 V / 346 V - 3-Phase

- Phase rotation clockwise
- System A measurement: 3-Phase PT "Open Delta" (Phase L2 (B) is grounded at the MSLC-2 connection)
- System B measurement: 1-Phase PT L1-L2 ("Phase phase")

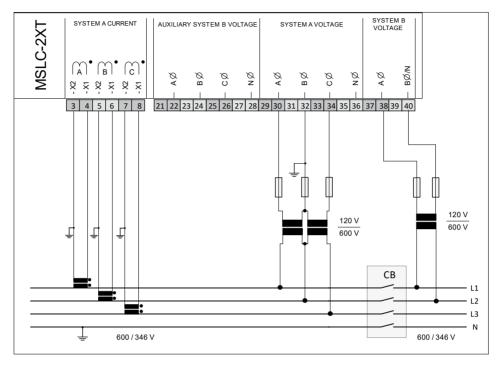


Figure 4-5: Low voltage system 600 V / 346 V - 3-phase

Configuration	Measurement	Voltage Monitoring
 Menu 5 System A rated voltage (parameter 1766): "600 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W OD" System B rated voltage (parameter 1781): "600 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "No" Transformer System A PT primary rated voltage (parameter 1801): "600 V" System A PT secondary rated volt. (parameter 1804): "600 V" System B PT primary rated voltage (parameter 1804): "600 V" System B PT secondary rated volt. (parameter 1803): "120 V" 	 System A [V] L1-L2 System A [V] L2-L3 System A [A] L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KVA] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [Hz] System A Phase rotation System B [V] L1-L2 System B [Hz] Phase-Angle System B-A 	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 Output Description:

Table 4-4: Low voltage system 600 V / 346 V - 3-phase

Page 164/253 © Woodward

Low Voltage System 600 V / 346 V - 3-Phase

- Phase rotation clockwise
- System A measurement: 3-Phase PT "Open Delta" (Phase L2 (B) is grounded at the MSLC-2 connection)
- System B measurement: 1-Phase PT L1-N ("Phase neutral")

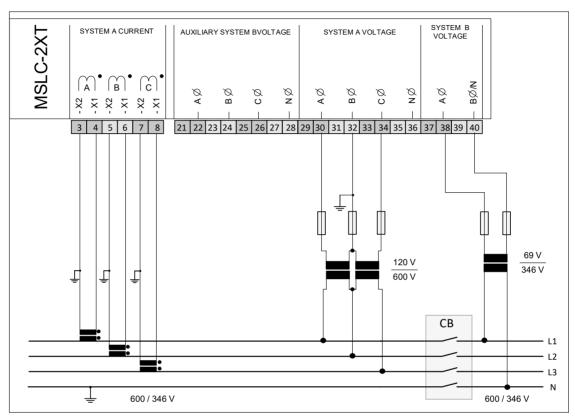


Figure 4-6: Low voltage system 600 V / 346 V - 3-phase

Configuration	Measurement	Voltage Monitoring
 Menu 5 System A rated voltage (parameter 1766): "600 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W OD" System B rated voltage (parameter 1781): "346 V" 1Ph2W voltage input (parameter 1858): "Phase – neutral" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "No" Transformer System A PT primary rated voltage (parameter 1801): "600 V" System A PT secondary rated volt. (parameter 1800): "120 V" System B PT primary rated voltage (parameter 1804): "600 V" System B PT secondary rated volt. (parameter 1803): "120 V" 	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KVA] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [FF] L3 System A [FF] L3 System A [Hz] System B [V] L1 System B [V] L1 System B [V] L1 System B [Hz] Phase-Angle System B-A	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 Output Description:

Table 4-5: Low voltage system 600 V / 346 V - 3-phase

© Woodward Page 165/253

Low Voltage System 600 V / 346 V - 3-Phase

- Phase rotation clockwise
- System A measurement: 3-Phase PT "Open Delta" (Phase L2 (B) is grounded at the MSLC-2 connection)
- System B measurement: 1-Phase PT L1-L2 ("Phase phase")
- Auxiliary system B measurement: 3-Phase "Open Delta"

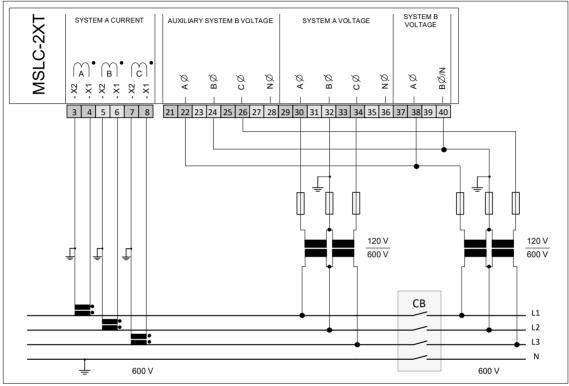


Figure 4-7: Low voltage system 600 V / 346 V - 3-phase

Configuration	Measurement	Voltage Monitoring
Menu 5 System A rated voltage (parameter 1766): "600 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W OD" System B rated voltage (parameter 1781): "600 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "Yes" Aux System B voltage measuring (parameter 1853): "3Ph 3W" Transformer System A PT primary rated voltage (parameter 1801): "600 V" System A PT secondary rated voltage (parameter 1804): "600 V" System B PT primary rated voltage (parameter 1804): "600 V" System B PT secondary rated volt. (parameter 1803): "120 V"	 System A [V] L1-L2 System A [V] L2-L3 System A [A] L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KW] System A [KVA] System A [KVA] System A [PF] L1 System A [PF] L2 System A [PF] L3 System A [Hz] System A Phase rotation 	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1
NOTE Connection plausibility is checked: "System B mismatch" Alarm ID 7770. See page 37 for details.	System B [V] L1-L2 System B [Hz] Phase-Angle System B-A	

Table 4-6: Low voltage system 600 V / 346 V – 3-phase

Page 166/253 © Woodward

- Phase rotation clockwise
- System A measurement: 3-Phase PT "wye" (Phase L2 (B) is grounded at the MSLC-2 connection)
- System B measurement: 1-Phase PT L1-L2 ("Phase phase")

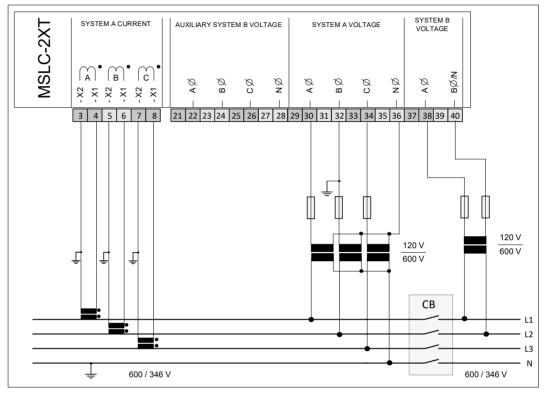


Figure 4-8: Low voltage system 600 V / 346 V - 3-phase with neutral

Configuration	Measurement	Voltage Monitoring
 Menu 5 System A rated voltage (parameter 1766): "600 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W" System B rated voltage (parameter 1781): "600 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "No" Transformer System A PT primary rated voltage (parameter 1801): "600 V" System A PT secondary rated volt. (parameter 1804): "600 V" System B PT primary rated voltage (parameter 1804): "600 V" System B PT secondary rated volt. (parameter 1803): "120 V" 	 System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KVA] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [Hz] System A Phase rotation System B [V] L1-L2 System B [Hz] Phase-Angle System B-A 	System A [V] L1-L2System A [V] L2-L3System A [V] L3-L1

Table 4-7: Low voltage system 600 V / 346 V – 3-phase with neutral

© Woodward Page 167/253

- Phase rotation clockwise
- System A measurement: 3-Phase PT "wye" (Phase L2 (B) is grounded at the MSLC-2 connection)
- System B measurement: 1-Phase PT L1-N ("Phase neutral")

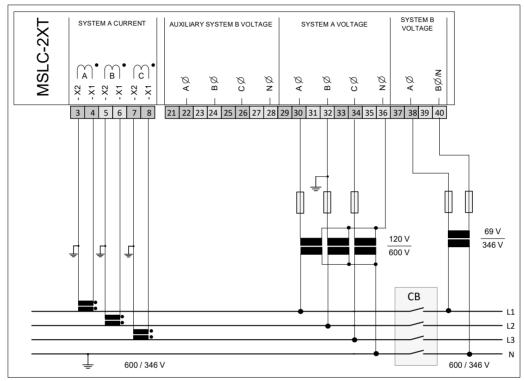


Figure 4-9: Low voltage system 600 V / 346 V – 3-phase with neutral

Configuration	Measurement	Voltage Monitoring
Menu 5 • System A rated voltage (parameter 1766): "600 V" • System A current input (parameter 1850): "L1 L2 L3" • System A voltage measuring (parameter 1851): "3Ph 4W" • System B rated voltage (parameter 1781): "346 V" • 1Ph2W voltage input (parameter 1858): "Phase – neutral" • 1Ph2W phase rotation (parameter 1859): "CW" • Auxiliary System B available (parameter 7629): "No" Transformer • System A PT primary rated voltage (parameter 1801): "600 V" • System A PT secondary rated volt. (parameter 1804): "600 V" • System B PT primary rated voltage (parameter 1804): "600 V" • System B PT secondary rated volt. (parameter 1804): "120 V"	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KW] System A [KVA] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [Hz] System A Phase rotation System B [V] L1 System B [Hz] Phase-Angle System B-A	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1

Table 4-8: Low voltage system 600 V / 346 V - 3-phase with neutral

Page 168/253 © Woodward

- Phase rotation clockwise
- System A measurement: 3-Phase PT "wye"
- System B measurement: 1-Phase PT L1-L2 ("Phase phase")
- Auxiliary system B measurement: 3-Phase PT "wye"

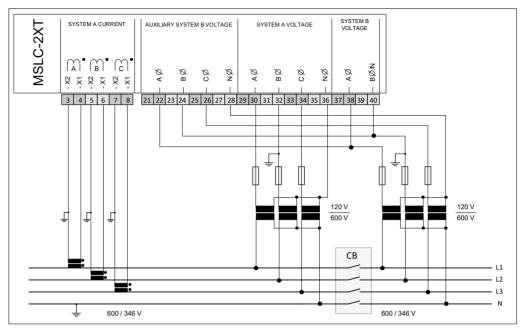


Figure 4-10: Low voltage system 600 V / 346 V – 3-phase with neutral

Configuration	Measurement	Voltage Monitoring
 Menu 5 System A rated voltage (parameter 1766): "600 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 4W" System B rated voltage (parameter 1781): "600 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "Yes" Aux System B voltage measuring (parameter 1853): "3Ph 4W" Transformer System A PT primary rated voltage (parameter 1801): "600 V" System A PT secondary rated voltage (parameter 1800): "120 V" System B PT primary rated voltage (parameter 1804): "600 V" System B PT secondary rated volt. (parameter 1803): "120 V" 	 System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KW] System A [KVA] System A [KVA] System A [PF] L1 System A [PF] L2 System A [PF] L3 System A [Hz] System A Phase rotation 	 System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1
NOTE Connection plausibility is checked: "System B mismatch" Alarm ID 7770. See page 37 for details.	 System B [V] L1-L2 System B [Hz] Phase-Angle System B-A 	

Table 4-9: Low voltage system 600 V / 346 V – 3-phase with neutral

© Woodward Page 169/253

- Phase rotation clockwise
- System A measurement: 3-Phase PT "wye"
- System B measurement: 1-Phase PT L1-N ("Phase neutral")
- Auxiliary system B measurement: 3-Phase PT "wye"

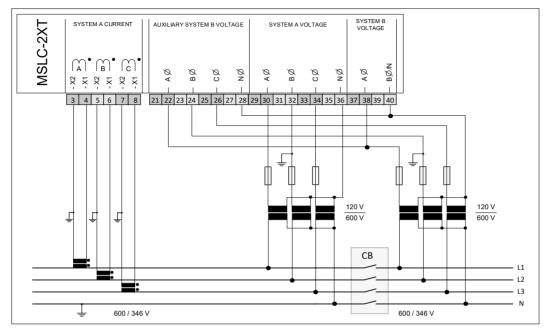


Figure 4-11: Low voltage system 600 V / 346 V – 3-phase with neutral

Configuration	Measurement	Voltage Monitoring
Menu 5 • System A rated voltage (parameter 1766): "600 V" • System A current input (parameter 1850): "L1 L2 L3" • System A voltage measuring (parameter 1851): "3Ph 4W" • System B rated voltage (parameter 1781): "346 V" • 1Ph2W voltage input (parameter 1858): "Phase – neutral" • 1Ph2W phase rotation (parameter 1859): "CW" • Auxiliary System B available (parameter 7629): "Yes" • Aux System B voltage measuring (parameter 1853): "3Ph 4W" Transformer • System A PT primary rated voltage (parameter 1801): "600 V" • System B PT primary rated voltage (parameter 1804): "600 V" • System B PT secondary rated voltage (parameter 1804): "600 V"	 System A [V] L1-L2 System A [V] L2-L3 System A [A] L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KW] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [Hz] System A Phase rotation 	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1
NOTE Connection plausibility is checked: "System B mismatch" Alarm ID 7770. See page 37 for details.	System B [V] L1System B [Hz]Phase-AngleSystem B-A	

Table 4-10: Low voltage system 600 V / 346 V – 3-phase with neutral

Page 170/253 © Woodward

Middle Voltage System 20 kV - 3-Phase without Neutral

- Phase rotation clockwise
- System A measurement: 3-Phase PT "Open Delta"
- System B measurement: 1-Phase PT L1-L2

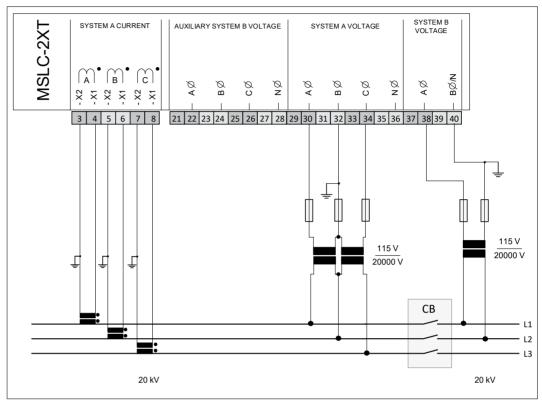


Figure 4-12: Middle voltage system 20 kV – 3-phase without neutral

Configuration	Measurement	Voltage Monitoring
 Menu 5 System A rated voltage (parameter 1766): "20000 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 3W" System B rated voltage (parameter 1781): "20000 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "No" Transformer System A PT primary rated voltage (parameter 1801): "20000 V" System A PT secondary rated volt. (parameter 1800): "115 V" System B PT primary rated voltage (parameter 1804): "20000 V" System B PT secondary rated volt. (parameter 1803): "115 V" 	 System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KW] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [Hz] System A Phase rotation System B [V] L1-L2 System B [Hz] Phase-Angle System B-A 	System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1 Output Description:

Table 4-11: Middle voltage system 20 kV – 3-phase without neutral

© Woodward Page 171/253

Middle Voltage System 20 kV - 3-Phase without Neutral

- Phase rotation clockwise
- System A measurement: 3-Phase PT "Open Delta"
- System B measurement: 1-Phase PT L1-L2
- Auxiliary system B measurement: 3-Phase PT "Open Delta"

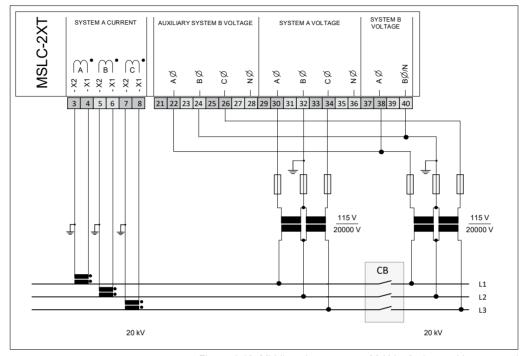


Figure 4-13: Middle voltage system 20 kV - 3-phase without neutral

Configuration	Measurement	Voltage Monitoring
Menu 5 System A rated voltage (parameter 1766): "20000 V" System A current input (parameter 1850): "L1 L2 L3" System A voltage measuring (parameter 1851): "3Ph 3W" System B rated voltage (parameter 1781): "20000 V" 1Ph2W voltage input (parameter 1858): "Phase – phase" 1Ph2W phase rotation (parameter 1859): "CW" Auxiliary System B available (parameter 7629): "Yes" Aux System B voltage measuring (parameter 1853): "3Ph 3W" Transformer System A PT primary rated voltage (parameter 1801): "20000 V" System A PT secondary rated volt. (parameter 1800): "115 V" System B PT primary rated voltage (parameter 1803): "115 V" NOTE Connection plausibility is checked: "System B mismatch" Alarm ID 7770. See page 37 for details.	 System A [V] L1-L2 System A [V] L2-L3 System A [A] L1 System A [A] L1 System A [A] L2 System A [A] L3 System A [KVA] System A [KVA] System A [KVA] System A [FF] L1 System A [FF] L2 System A [FF] L3 System A [FF] L3 System A [Hz] System B [V] L1-L2 System B [Hz] Phase-Angle System B [V] L1-L2 Aux System B [V] L1-L2 Aux System B [V] L1-L2 Aux System B [V] L2-L3 Aux System B [V] L3-L1 Aux System B [N] L3-L1 Aux System B [Hz] 	 System A [V] L1-L2 System A [V] L2-L3 System A [V] L3-L1

Table 4-12: Middle voltage system 20 kV - 3-phase without neutral

Page 172/253 © Woodward

Dead Bus Closure - Multiple Units

When a dead bus is detected and dead bus closing mode is "Enabled", the MSLC-2 is doing a security check before issuing a breaker closure command. This security is required to prevent two or more units from closing their breakers at the same time.

To provide this security, the active MSLC-2 is listening on the network, if any other DSLC-2 or MSLC-2 wants already close its breaker:

- If any DSLC-2 wants to close its breaker, the active MSLC-2 cancels the wish for breaker closure, remains passive and still listen on the network, if the situation changes
- If no DSLC-2 wants to close its breaker, the active MSLC-2 publish a close wish on the network and listen, if there is any other control wish to close its breaker. Three scenarios are now possible:
 - Scenario 1: No other control announces a close desire within the next 500 ms. After that the MSLC-2 closes its breaker.
 - Scenario 2: No other control with a smaller Device-ID announces a desire for dead bus closure within the next 500 ms. After that the MSLC-2 closes its breaker.
 - **Scenario 3:** Another control with a smaller Device-ID announces a desire for dead bus closure, so the MSLC-2 cancels the wish for breaker closure, remains passive and still listen on the network, if the situation changes.

NOTE

The DSLC-2s have a higher priority for dead bus closure than the MSLC-2s. In other words: If a DSLC-2 wishes to close the GCB on a dead busbar the MSLC-2s are blocked.

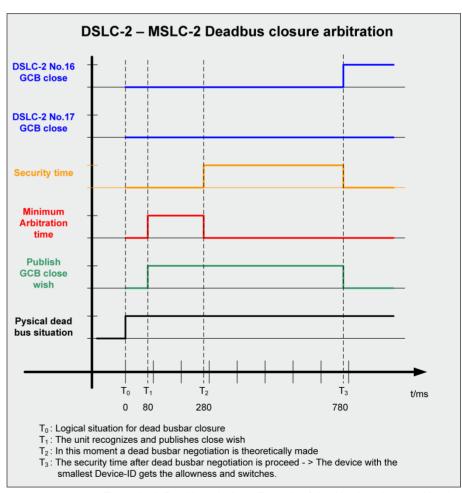


Figure 4-14: Dead bus closing – Example of dead busbar closure arbitration

© Woodward Page 173/253

Deadbus Closure Mismatch Alarm

When a deadbus is detected and dead bus closing mode is activated by a *Run* or *Permissive* command, the MSLC-2 is doing an additional security check before issuing a breaker closure command.

If the MSLC detects a closed breaker (GCB or MCB) at System A or System Bthen the alarm "Deadbus closure mismatch" is set and the MSLC-2 will not close to a deadbus.

The alarm "Deadbus closure mismatch" (parameter 4620) shows the deadbus plausibility in ToolKit Menu 8. Additional, a Relay output: Alarm1, Alarm2 or Alarm3 can be assigned within ID 7598 in ToolKit Menu 0. Finally the deadbus closure mismatch alarm is added internally to the "Centralized Alarm" and can be first detected therefore in the ToolKit Homepage with the LED "Centralized Alarm".

The Deadbus closure mismatch alarm is set with following detailed conditions:

Utility MSLC2:

- Precondition: Start Deadbus closure with energizing DI "Run" or DI "Permissive"
- A GCB in the own segment is closed and the busbar is dead
- Another MCB in the own segment is closed and the busbar is dead

Tie MSLC2:

- Precondition: Activate Deadbus closure by a Run or Permissive command
- GCB closed and busbar is dead on system A
- GCB closed and busbar is dead on system B
- MCB closed and busbar is dead on system A
- MCB closed and busbar is dead on system B

The deadbus closure mismatch alarm is reset (self-acknowledge) with following conditions:

- Still deadbus but no closed breaker in the same segment (via breaker open feedback received)
- Deadbus changes to "Voltage ok" on busbar in the detected segment with the closed breaker
- De energize DI "Run" or DI "Permissive"

Page 174/253 © Woodward

Voltage Matching

The voltages of two systems in parallel must be matched within a small percentage to minimize the reactive power flow in the system. If a local plant is paralleled to the main grid with unequal voltages, the local plant will, in most cases, follow the utility voltage. The difference in voltages results in reactive currents flowing in the system with subsequent lowered system efficiency.

If the system is initially at a lower voltage than the utility, reactive power will be absorbed by the system. If the system voltage was initially higher, the local plant will provide extra reactive power to the utility. In either case the breaker across which the parallel is made will experience unnecessary wear and tear created by the arcing across different voltages.

The MSLC-2 measures the RMS values of the voltages. The synchronizer issues appropriate raise or lower commands, or voltage bias adjustment to all of the DSLC-2 controls over the Ethernet network. The MSLC-2 will continue this process until the difference between System B and System A voltage is within a specified window. The automatic voltage matching function may be enabled or disabled with a configuration setpoint. When enabled, voltage matching will occur in both the "Check" and "Run" modes and is verified to be within the window in the "Permissive" mode.

Phase Matching Synchronizing

The phase matching synchronizer mode corrects the frequency and phase of system A to lock it to system B frequency and phase. Phase matching synchronizing can be configured (parameter 5730) in the unit. With activation of the synchronizer the MSLC-2 begins to control at first the frequency to minimize the frequency difference between system B and system A. When the frequency window comes into the range of phase matching start, see configuration *Phase matching df-start* (parameter 5506), the synchronizer watches the phase relation. Therefore the frequency setpoint to the DSLC-2 increases or decreases and result in speed biasing to the engine depending on whether the slip is faster or slower than the system A. Proportional and integral gain adjustments are provided to allow stable operation of the automatic synchronizer over a wide range of system dynamics.

Slip Frequency Synchronizing

In certain applications the initial power flow can be either from or to the utility. Depending on the requirement, the local bus can be brought into parallel with a slightly higher or lower frequency than the mains. This can be provided by the parameter *Slip frequency setpoint offset* (parameter 4712). The slip frequency method is configured using *Synchronization CB* (parameter 5730). The synchronizer automatically controls the connected generator at the specified slip frequency. The MSLC-2 outputs an error signal over the network to the DSLC-2 controls to change their bias on the speed controls. Gain and stability adjustments for the slip frequency proportional and integral gain controller are provided to allow stable operation of the automatic synchronizer function over a wide range of system dynamics (parameter 4539, parameter 4540).

Permissive Mode / Synch-Check Function

The synch-check function determines when frequency, phase and voltage are within the configured settings for proper synchronization before issuing a breaker closure command. The *Setpoint frequency* (parameter 4627) and *Setpoint voltage* (parameter 4628) are not used to drive system B into synchronization. The MSLC-2 can be manually controlled using the setpoint raise/ lower and voltage raise/ lower discrete inputs. The system A and system B voltage comparison is made independent of the voltage matching function being enabled. When all conditions of voltage and phase are met, then a constant breaker closure command is given.

© Woodward Page 175/253

GCB Maximum Closing Attempts

The synchronizer allows multiple breaker closure attempts to an active or dead bus. The control provides setpoints for the number of close attempts (parameter 3419) and the reclosure delay timing (parameter 4534). The synchronizer feature has 2 alarms, *Reclose limit alarm* (parameter 7556) and the *Synchronizer timeout alarm* (parameter 7557). These alarms will affect the synchronizer differently between an active or dead bus.

Dead bus closing

If both alarms are disabled, you will receive infinite breaker closure attempts. If one or both alarms are enabled, when that alarm setting is reached, an alarm is received and no more breaker close attempts will be given. This is important when you have multiple utilities attempting to close to a dead bus. The MSLC-2 that receives the dead bus token will not pass the dead bus token until it receives an alarm. So having 1 or 2 close attempts is preferred in a multiple utility application.

Active bus closing

If both alarms are disabled, you will receive infinite breaker closure attempts. If one or both alarms are enabled, when that alarm setting is reached, an alarm is received but the synchronizer will keep providing breaker closure commands until a "CB Aux" feedback is received or the "Run" or "Permissive" input is removed.

Auto re-synchronization

The *Auto re-synchronization* feature (parameter 7514), when enabled, allows the MSLC-2 to attempt to reclose the breaker if the "CB Aux" feedback is opened and the MSLC-2 still has a "Run" or "Permissive" input closed. The auto re-synchronizer feature becomes active after a successful breaker closure is received. Then if the breaker feedback (CB Aux) is opened and the "Run" or "Permissive" input is still closed, the MSLC-2 will attempt to close the breaker when in the synchronizer specifications. If configured for "Disabled", no attempt at synchronization will be made until the "Run" input is then opened and reclosed. This is active even when a utility unload command is given and the MSLC-2 opens the breaker. With auto re-synchronization "Enabled", the synchronizer will become active.

NOTE

Woodward suggest to remove the "Run" or "Permissive" input after a successful breaker closure has been received and have the "Run" or "Permissive" input reclosed if the breaker opens and it is safe to reclose it.

Reclose limit alarm

When the *Reclose limit alarm* (parameter 7556) is "Enabled" an independent monitor counts in the background the number of close attempts. When the number of close attempts matches the configurable number of closing attempts (parameter 3419) an alarm flag will be issued. This alarm flag is automatically considered when a dead busbar closure is executed. When during the dead busbar closure, the reclose limit alarm becomes active; the dead busbar closure permission will be passed to another MSLC-2. If the *Reclose limit alarm* (parameter 7556) is "Disabled", the MSLC-2 will have an infinite number of attempts to close the breaker.

Synchronizer Timer

The synchronizer function is equipped with three adjustable timers.

- 1. The *CB close hold time* (parameter 3417) determines the amount of time the control maintains the breaker close command.
- 2. The Synchronizer timeout (parameter 3063) when the Synchronizer timeout alarm (parameter 7557) is "Enabled". The alarm is removable by de-energized run signal.
- 3. The *Reclose delay* (parameter 4534) which is the time delay between the single close commands.

When "Enabled" the synchronizer timer starts when the "Run" switch is closed. It is not active in the check or permissive modes. If no breaker closure is received by the end of the timer, a synchronizer timeout alarm is received and the MSLC-2 will stop the synchronizing process. If the "Run" input is removed, the alarm is reset and when the "Run" input is closed the synchronizer process will be active.

Page 176/253 © Woodward

Logic Charter GCB Closure

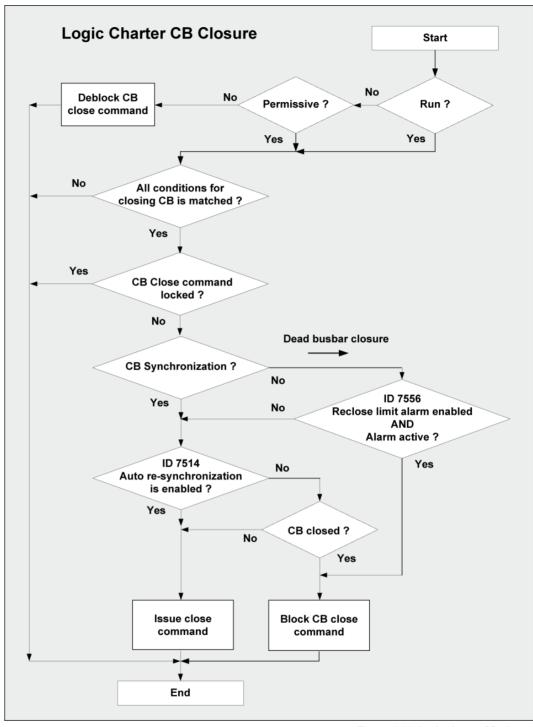


Figure 4-15: Logic charter CB closure

© Woodward Page 177/253

Ramping

The MSLC-2 is providing some intelligent ramps for controlled "move" from current to requested status. Because of the number of ramps and conditions, please find below an overview below what ramp rate is used in case ...

The MSLC-2 ramps its setpoints before sending to the DSLCs. The DSLC-2 accepts these setpoints, if:

- 1. The DSLC-2 and MSLC-2 reside in the same segment.
- 2. The DSLC-2 is neither switched in Base Load nor Process Control
- 3. The DSLC-2 is not in Unload Mode

The DSLC-2 is usually accepting setpoints from the MSLC-2 directly into its PIDs with some exceptions:

- Each time a DSLC-2 closes its breaker, it ramps first with its own load ramp rate onto the busbar.
- Each time a DSLC-2 recognizes being mains parallel, it ramps first with its own load ramp rate onto the busbar.

With reaching the MSLC-2 setpoint, the DSLC-2 disables the ramp and channels the setpoint through to the load PID.

The behavior with the kvar setpoint is the same as long kvar—or PF—control is done over the MSLC-2 interchange point (Kvar Import/Export Control).

Mode	Function	Related ramp rate (Parameter)
Manual Permissive	DSLC Isolated Operation, MCB open: Apply a new frequency setpoint by Raise/Lower commands.	ID 4713 DI raise frequency ramp ID 4714 DI lower frequency ramp
Manual Permissive	DSLC Isolated Operation, MCB open: Apply a new voltage setpoint by raise/lower commands.	ID 4715 DI raise voltage ramp ID 4716 DI lower voltage ramp
Base Load	Mains Parallel Operation (kW): Apply a new Base Load setpoint by Raise/Lower commands. In this case the load ramp and the respectively Raise/Lower ramp rate are incorporated. Note: If the raise/lower ramp rate value is larger than the load ramp rate value, the load ramp determines the overall ramp rate. If the Raise/Lower ramp rate is smaller than the load ramp rate, the Raise/Lower ramp rate determines the overall ramp.	ID 4700 Load ramp rate ID 4713 DI raise frequency ramp ID 4714 DI lower frequency ramp
Base Load	Mains Parallel Operation (kW): A new Base Load setpoint is applied by Remote Input (AI).	ID 4549 Load ramp rate
Base Load	Mains Parallel Operation (PF): A new Constant Generator Power Factor (ID5621) is applied by Toolkit.	ID 5622 Reactive power setpoint ramp
Imp/Exp Control	Mains Parallel Operation: First ramping into Import/Export control window.	ID 4549 Load ramp rate

Page 178/253 © Woodward

		-
Mode	Function	Related ramp rate (Parameter)
Imp/Exp Control	Mains Parallel Operation (I/E kW): A new Export/Import Load setpoint (ID7717) is applied by Toolkit. Note: The output of the PID is sent to the DSLC as setpoint load level.	ID 4549 Load ramp rate
Imp/Exp Control	Mains Parallel Operation (I/E kW): A new Export/Import Load setpoint is applied by Remote Input (AI). Note: The output of the PID is sent to the DSLC as setpoint load level.	ID 4549 Load ramp rate
Imp/Exp Control	Mains Parallel Operation (I/E kW): Apply a new Import/Export setpoint by Raise/Lower commands. In this case the load ramp and the respectively Raise/Lower ramp rate are incorporated. Note: The output of the PID is sent to the DSLC as setpoint load level.	ID 4549 Load ramp rate
Imp/Exp Control	Mains Parallel Operation (I/E kW): A new Export/Import setpoint (ID7642) is applied by communication interface.	ID 4549 Load ramp rate
Imp/Exp Control	Mains Parallel Operation (I/E kvar): A new Export/Import reactive load setpoint (ID7723) is applied by Toolkit. Note: The output of the PID is sent to the DSLC as setpoint reactive load level.	ID 5622 Reactive power setpoint ramp
Imp/Exp Control	Mains Parallel Operation (I/E PF): A new Export/Import Power Factor setpoint (ID5620) is applied by Toolkit. Note: The output of the PID is sent to the DSLC as setpoint reactive load level.	ID 5622 Reactive power setpoint ramp
Imp/Exp Control	Mains Parallel Operation (I/E PF): A new Power factor setpoint (ID7640) is applied by communication interface.	ID 5622 Reactive power setpoint ramp
Process Control	Mains Parallel Operation: First ramping into process control window.	ID 4549 Load ramp rate
Utility Un- load	Mains Parallel Operation: The utility is unloaded. The reactive power is unloaded accordingly.	ID 4524 Unload ramp rate ID 5622 Reactive power setpoint ramp

Table 4-13: Ramping overview

© Woodward Page 179/253

Manual Synchronizing

The manual synchronizer is activated / deactivated under the following conditions.

Activated

• MCB/tie-breaker = open

AND

DI "Check" (active)

AND

• DI "Permissive" (active)

Deactivated

Breaker feedback DI "CB Aux" = closed

OR

DI "Check" (not active)

AND

DI "Permissive" (not active)

The MSLC-2 is before and during the manual synchronization in *Load control mode* (parameter 4603) "Off Line", and in the *Synchronizer mode* (parameter 4602) "Off", independent if the MSLC-2 is configured to utility or tie.

Frequency Setpoint

It is possible with discrete input "Setpoint Raise" or discrete input "Setpoint Lower" to adjust the *Setpoint frequency* (parameter 4627) of connected DSLCs, which are in the same segment, up and down (ramp rate adjustable from 0,01%rated/s to 100,00%rated/s (0.01%rated/s) with parameter 4713, parameter 4714). The setpoint frequency is the direct output of the parameter *Setpoint frequency* (parameter 4627) is transferred in Hz to the DSLCs. The setpoint frequency is limited due to the parameters *Upper frequency limit* (parameter 5802) and *Lower frequency limit* (parameter 5803). The operating ranges of these parameters are adjustable in Menu 5.

- Upper frequency limit (parameter 5802) | Range: 100 to 150% | Default: 110% = 66 Hz (with rated frequency = 60 Hz)
- Lower frequency limit (parameter 5803) | Range: 50 to 100% | Default: 90% = 54 Hz (with rated frequency = 60 Hz)

NOTE

Frequency setpoint DSLC-2:

Received via parameter Setpoint frequency (parameter 4627) | Range: 54 to 66 Hz (limited 90 to 110% from rated frequency, for example 60 Hz)

Voltage Setpoint

It is possible with discrete input "Voltage Raise" or discrete input "Voltage Lower" to adjust the *Setpoint voltage* (parameter 4628) of connected DSLCs, which are in the same segment, up and down (ramp rate adjustable from 0,01%rated/s to 100,00%rated/s (0.05%rated/s) with parameter 4715, parameter 4716) t. The setpoint voltage is the direct output of the parameter *Setpoint voltage* (parameter 4628) is transferred in% to the DSLCs. The setpoint frequency is limited due to the parameters *Upper voltage limit* (parameter 5800) and *Lower voltage limit* (parameter 5801). The operating ranges of these parameters are adjustable in Menu 5.

- Upper voltage limit (parameter 5800) | Range: 100 to 150% | Default: 110% = 440 V (of rated voltage = 400 V)
- Lower voltage limit (parameter 5801) | Range: 50 to 100% | Default: 90% = 360 V (of rated voltage = 400 V)

NOTE

Voltage setpoint DSLC-2:

Received via parameter Setpoint voltage (parameter 4628) | Range: 90 to 110% (limited 80 to 120% from rated voltage)

Page 180/253 © Woodward

Breaker Close

The MCB/tie-breaker can be closed manually when system B frequency and voltage are in range.

CAUTION

The rotation field of system A and system B must be measured. They must have the same direction – CW or CCW.

Reset Frequency / Voltage Setpoints Back To Rated (50 Hz or 60 Hz)

- MSLC-2 configured as utility breaker control: MCB/tie-breaker = closed and breaker feed-back mains parallel operation
- MSLC-2 configured as tie-breaker control: Manual synchronizer = off and MCB/tie-breaker
 = closed

© Woodward Page 181/253

Chapter 5. Real Power Control Description

Introduction

The MSLC-2 control provides several modes of generator load operation. These are:

- · Base loading
 - Automatic control of generators kW and constant generator PF control
- Import/export level control
 - Automatic control of the systems import or export power and either var or power factor control or constant generator PF control
- · Process control
 - Automatic control of a process signal with either var or power factor control or constant generator PF control
- · Utility unload
 - The ability to transfer the system load from the utility to the generators with the utility breaker being opened at the *Utility unload trip* (parameter 4506) level

MSLC-2 / DSLC-2 Interface

The MSLC-2 is able to control load and reactive load with only active DSLC-2 controls which are connected to the same bus segment and are in the load sharing mode. DSLC-2s that are in base load or process control cannot be controlled by a MSLC-2. The MSLC-2 can synchronize multiple DSLC-2s to the utility. Once the utility breaker is closed, the MSLC-2 must be placed in a load control mode. These are base load, import/export, process control or utility unload. MSLC-2s in the tie-breaker mode will

synchronize and close the tie-breaker to connect different bus segments but will not have any load control capabilities.

NOTE

The DSLC-2 will show it is in the base load mode (parameter 4603) when being controlled by a MSLC-2.

Base Load Mode

The MSLC-2 takes the system load percentage immediately upon entering the base load mode for the initial base load reference setting. This is true when synchronizing to the utility or transferring from import/export mode to base load. The base load reference can be moved by using the setpoint "Raise" or "Lower" discrete inputs with an option to use the remote analog input to control the reference. The DSLC-2 controls will maintain the system load percentage being provided by the MSLC-2 with the utility picking up all load swings. Using the setpoint lower input will decrease the system load percentage, thus unloading the generators and transferring the load to the utility. The MSLC-2 has a *Generator unload trip* (parameter 3125) level that activates the Lcl. / generator breaker open relay. This output can be used to open a group breaker or to signal the DSLC-2s to open the generator breaker. This breaker stays active for 400 milliseconds. When in base load control the reactive power control will automatically be the constant generator PF mode. While unloading the kW of the generators you will need to unload the reactive power. The MSLC-2 will change the constant generator PF control reference to 1.0 when the system load percentage reaches the *Generator unload trip* (parameter 3125) setpoint.

Page 182/253 © Woodward

Import / Export Mode

The MSLC-2 measures the real power flow to or from the main power grid. It then controls all active DSLC-2s by controlling the system load percentage signal. The individual DSLC-2 controls will control to this percentage of their rated loads and the MSLC-2 will adjust this system load up or down to achieve the proper import/export level. The system load percentage is limited to a 0 to 100% signal so that overload or reverse power of the generators will never occur. When in import / export mode the PID control is located in Menu 2. The DSLC-2 controls are using the base load PID (Menu 2) to control at the reference signal being sent from the MSLC-2. The reactive power can be configured for var, PF, or constant generator PF control.

NOTE

Any DSLC-2 set for base loading will maintain its individually set base load, regardless of the MSLC-2 signal. Therefore, a sufficient number of generators must be in isochronous load sharing in order to handle plant load swings and still maintain the import/export level. The DSLC-2s *Load control mode* (parameter 4603) will indicate base load mode when being controlled by the MSLC-2.

Process Control Mode

The MSLC-2 controls the DSLC-2 equipped generators by adjusting the system load. The MSLC-2 will control the system load to maintain the process input signal is equal to the process reference The MSLC-2 is limited to changing the reference signal to the DSLC-2 controls between 0 and 100%. The reactive power can be configured for var, PF, or constant generator PF control.

Remote Control

In any of the above modes, the reference can be determined by an analog signal input at terminals 83 to 85. The remote mode is selected by activating both the setpoint raise and lower at the same time. Menu 6 determines the scaling and the engineering units. The remote load reference signal can be a base load, import / export or a process control value.

The reactive load analog input at terminals 89 to 91 can be used for a power factor setpoint control or a constant generator power factor control reference. Menu 6 determines the scaling.

Automatic Power Transfer Control Functions

Ramping Between Modes

Whenever the mode of load control is changed, the MSLC-2 will ramp at a user chosen rate until it is within 5% of its new reference. Then, it will begin dynamic control. This provides smooth (bumpless) transitions between all modes.

Utility Unload

The utility unload feature is available with the MSLC-2 in base load, import / export or process mode. When the utility unload command is issued, the MSLC-2 will adjust the *Setpoint load level* (parameter 4629) until a specified level around the zero power transfer point is obtained. It will then issue a utility breaker open command. The *Utility unload trip* (parameter 4506) determines at which power value the tolerance for opening the breaker is reached. If the local plant is initially operating at some export level,

© Woodward Page 183/253

supplying power to the utility, the MSLC-2 will lower the system load setpoint to obtain a zero power transfer condition. If the local plant is initially operating at some import level, absorbing power from the utility, the MSLC-2 will raise the system load setpoint to obtain a zero power transfer condition. If the MSLC-2 cannot bring the import/export level within the chosen band prior to reaching a system load setpoint of 0% or 100%, the unload will stop and if enabled the appropriate high/low limit alarms will activate. When the *Utility unload trip time* (parameter 3123) is reached the breaker will be opened independent on the trip level.

Local Unload

When the MSLC-2 is in base load mode and the setpoint lower command is continuously activated, the control will lower the *Setpoint load level* (parameter 4629), which is sent to the DSLC-2s. When the system level reaches the *Generator unload trip* (parameter 3125) level, the Lcl. / generator breaker open relay will energize. This relay will energize for 400 milliseconds. This will transfer the plant load back to the utility power grid. During unloading, the MSLC-2 is in the constant generator PF mode. When the *Generator unload trip* (parameter 3125) level is reached, the MSLC-2 will change the constant generator PF level to 1.0.

	DI CB AUX	DI Utility Unload	DI Base Load	DI Imp/Exp Control	DI Process Control	DI Ramp Pause	DI Setpoint Raise	DI Setpoint Lower
Off Line	0	Х	Х	Х	Х	Х	х	Х
Base Load	1	0	1	0	0	0	0	0
Base Load Raise	1	0	1	0	0	0	1	0
Base Load Lower	1	0	1	0	0	0	0	1
Base Load ¹ Remote	1	0	1	0	0	0	1	1
Utility Unload ²	1	1	х	х	Х	0	х	Х
Local Unload ³	1	0	1	0	0	0	0	1
Ramp Pause ⁴	1	Х	Х	Х	Х	1	Х	Х
Import/ Export mode	1	0	х	1	0	0	0	0
I/E Raise	1	0	Х	1	0	0	1	0
I/E Lower	1	0	х	1	0	0	0	1
I/E Remote ¹	1	0	Х	1	0	0	1	1
Process Control	1	0	х	х	1	0	0	0
Process Raise	1	0	х	х	1	0	1	0
Process Lower	1	0	х	х	1	0	0	1
Process Remote ¹	1	0	х	х	1	0	1	1

Table 5-1: Load control modes MSLC-2

NOIE

¹ Remote reference is activated by closing both setpoint raise and setpoint lower switches at the same time.

Page 184/253 © Woodward

² The MSLC-2 can only load the associated generators to 100%. If this is not enough capacity to unload the utility, the unload ramps stops at 100% rated load on the associated generators. The generator high limit alarm, if enabled, will activate at this time.

³ The local plant unload is accomplished by switching to base load mode and supplying a continuous setpoint lower command.

⁴ The ramp pause command will pause all ramps in any mode.

Chapter 6. Var/Power Factor Control Description

Introduction

The MSLC-2 offers 3 modes of reactive power control. Var or power factor modes will control the reactive power at the utility breaker while constant generator PF control will provide a power factor setpoint to all DSLC-2 controls on the system.

When an utility unload command is issued, the control automatically shifts from var control to power factor control in order to ensure a minimum amount of current flow across the utility tie when it is opened. It is important to note that, as with the real load functions, the var/PF control in the MSLC-2 controls only those DSLC-2 controls which are in isochronous load sharing. Any DSLC-2 controls which are in base load mode will control the reactive power on their associated generators in accordance with their own internal reference and chosen mode of var/PF control.

Constant Generator Power Factor

The MSLC-2 sets the power factor reference of the generators according to the value chosen by:

- Base Configuration: VAR PF control mode (parameter 7558) configured to "Constant Generator PF" and reference value Constant gen. PF reference (parameter 5621).
- **ToolKit:** Changing the *Constant gen. PF reference* (parameter 5621) in ToolKit will change the reference value being controlled.
- **Adaptation:** With the settings of the base configuration the constant gen PF reference can be influenced by voltage raise and voltage lower commands.
- **Remote:** With the settings of the base configuration the *Constant gen PF reference* (parameter 5621) can be influenced by an analog signal ("Reactive Load Input"). The voltage raise and voltage lower signal must be energized simultaneously.
- **Interface:** With the settings of the base configuration the *Constant gen PF reference* (parameter 5621) can be influenced by interface, when the configuration *VAR control setpoint source* (parameter 7635) is set to "Interface".
- Control: The DSLC-2s PID var control will affect the stability of the power factor control.

© Woodward Page 185/253

Power Factor Control

The MSLC-2 adjusts the power factor references of the generators in order to maintain a chosen power factor level across the utility tie. The MSLC-2 sends a system reactive power percentage value to the DSLC-2s. Following procedures are possible:

- Base Configuration: VAR PF control mode (parameter 7558) configured to "PF Control" and Power factor reference (parameter 5620) is configured.
- **ToolKit:** Changing the *Power factor reference* (parameter 5620) in ToolKit will change the reference value being controlled.
- **Remote:** With the settings of the base configuration the *Power factor reference* (parameter 5620) at the MSLC-2 can be influenced by an analog signal ("Reactive Load Input"). The voltage raise and voltage lower signal must be energized simultaneously.
- **Interface:** With the settings of the base configuration the *Power factor reference* (parameter 5620) at the MSLC-2 can be influenced by interface, when the configuration *VAR control set-point source* (parameter 7635) is set to "Interface".
- **Control:** The PID var control setting in the MSLC-2, Menu 4 will affect the stability of the power factor control.

Var Control

The MSLC-2 adjusts the power factor reference of the generators in order to maintain a chosen var level across the utility tie. The MSLC-2 sends a system reactive power percentage value to the DSLC-2s. The unit allows only one basic setting:

- Base Configuration: VAR PF control mode (parameter 7558) configured to "VAR Control" and KVAR reference (parameter 7723) is configured.
- **ToolKit:** Changing the *KVAR reference* (parameter 7723) in ToolKit will change the reference value being controlled.
- Control: The PID var control settings in the MSLC-2, Menu 4, will affect the stability of the var control.

Page 186/253 © Woodward

Chapter 7. Process Control Description

Introduction

The process control function of the MSLC-2 will control any process where the controlled parameter is determined by the load on the local generators and the controlled parameter can be monitored as an analog input signal (process input). The control compares the input signal to the process reference setpoint, or the remote reference if used and adjusts the local generator loading to maintain the desired setpoint.

NOTE

The MSLC-2 system load command is obeyed only by the associated DSLC-2 controls which are in isochronous load sharing. DSLC-2s in Base load or process control mode will ignore the MSLC-2 load command signal and maintain its set load reference. The DSLC-2s Load Control mode (parameter 4603) will display Base load mode when being controlled by a MSLC-2.

Description

Figure 7-1 shows a block diagram of the process control function. The process control mode is selected when the "Process Control" and "CB Aux" switch contacts are closed. The process input signal is compared with the process reference, which may be either the internal *Process reference* (parameter 4605) or the analog remote process reference input (Configurable in Menu 6). In process control mode, the "Load Raise" and "Load Lower" contact inputs operate on the process control reference. When the internal reference is used, the "Load Raise" and "Load Lower" contacts raise and lower the process reference based on the internal *Process reference* (parameter 4605). The analog remote reference input becomes active on the process reference, when both the "Load Raise" and "Load Lower" contacts are closed.

Each time a new process control begins, the first error signal is checked. If the process error signal is higher than 5% or lower than -5% the generator load is guided over a ramp function to leveling the error signal. This shall be a relatively smooth process. When the error signal resides within +/-5% the Process PID function becomes active. The process PID function also becomes active, if the ramp function has reached the minimum or the maximum gen load level (0 to 100%). If the process PID is one time activated, it remains active until the process control is switched off or the CB gets open.

When the process control is enabled, the PID controller operates in cascade with the load control. The output of the controller is a generator load reference within the range 0 to 100% rated power to prevent overload or reverse power on the generator. The load setting signal is output from the load control to the speed control to set control at the required load to maintain the desired process level. An additional feature of the process control is the adjustable process input signal filter. The adjustable *Process filter*, Menu 3 (parameter 4509) allows reducing bandwidth when controlling a noisy process such as experienced in digester gas fuel applications. The process control function is configurable for direct and inverse action. Direct process control is where the sensed input signal increases as the load increases (such as when controlling import power where the sensed input signal decrease as the load increases (such as when controlling import power where the import power will decrease as the generating system picks up more of the local load).

The process error is the difference between process signal input and process reference. The controller in the MSLC-2 regulates the percentage values. For a better understanding the engineering unit can be

© Woodward Page 187/253

displayed according to the percentage value. Therefore the scaling of the percentage value is to make with according engineering units (parameter 7732, parameter 7733 and parameter 7734). The units are then displayed in field parameter 7726 and in field parameter 7727 in Menu 6 or the Homepage.

The *Process signal input* (parameter 10151) and the *Remote reference input* (parameter 10117) is displayed in Menu 6 in%.

The resulting *Process reference* (parameter 4605) and the resulting *Process signal input* (parameter 4600) is displayed in the Homepage in%.

Page 188/253 © Woodward

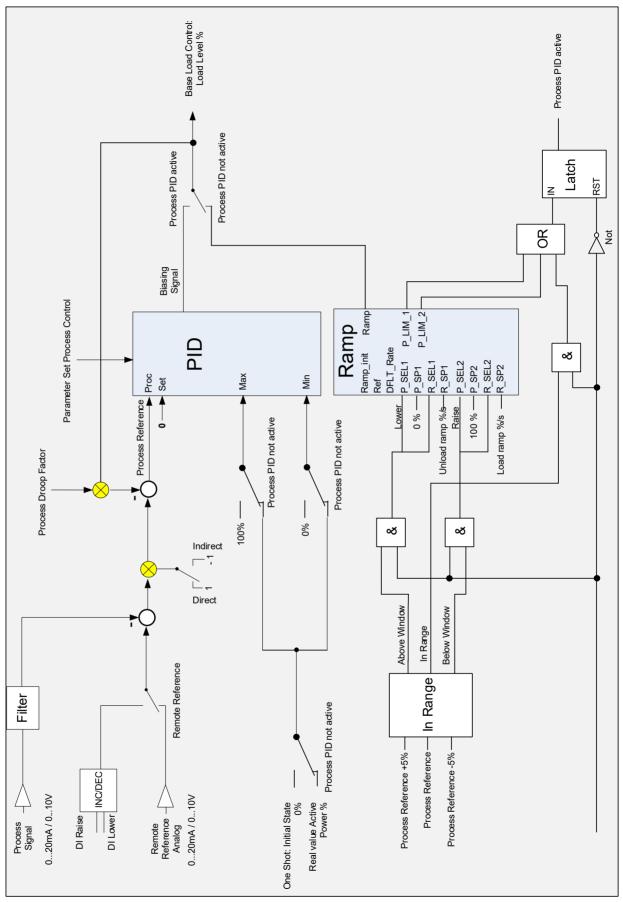


Figure 7-1: Diagram process control

© Woodward Page 189/253

Chapter 8. Network / System Description

Introduction

The new DSLC-2 / MSLC-2 system provides within one network following features:

- The maximum number of DSLC-2s (Generator) can go up to 32.
- The maximum number of MSLC-2s (Utility- or Tie-breaker) can go up to 16.
- The maximum number of segments is 8.

The DSLC-2 still cares about the generator breaker and the MSLC-2 cares about utility breaker or a tie-breaker. The DSLC-2 and MSLC-2 can reside at different segments. A segment is defined as the smallest undividable bar in a system. Segment connectors inform the DSLC-2s and MSLC-2s which generators and utilities are connected. Through the segmenting the DSLC-2 / MSLC-2 can recognize all the time with which other units they are interconnected. So the DSLC-2s in the same segment are load share together or doing an independent load control.

The MSLC-2 can be configured to utility breaker mode or to tie-breaker mode. In each case it is only allowed to have one MSLC-2 in one segment running as master control. A MSLC-2 gets a master control when base load control, export/import control or process control is activated. If multiple MSLC-2s are in the same segment, the control with the lowest device number will be master.

Description

Beside the upper described restrictions there are existing additional rules for the successful operation of the DSLC-2 / MSLC-2 system. Please read this rules and compare it with your planned application.

- The segment numbers have to follow a line, which can finally be closed to a ring. A segment branch is not allowed.
- There can be placed several MSLC-2 in one segment, but only one MSLC-2 can run as Master control.
- The generator is not counted as a segment.
- The utility is not counted as a segment.

The intention of the following application examples is to provide a better understanding of the philosophy of segmenting:

Page 190/253 © Woodward

Applications without Segmenting

In some applications there is no segmenting to make because the common busbar of DSLC-2 and MSLC-2 cannot be separated. In this case in Menu 5, *Basic segment number* (parameter 4544) is configured to 1 at each unit. The *Device number* (parameter 1702) needs still to be different because it determines the network addressing. See Figure 8-1 and Figure 8-2 for examples which need no segmenting.

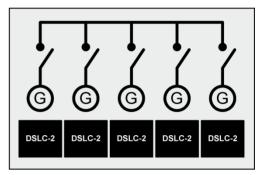


Figure 8-1: Multiple generators in isolated operation without tie-breakers

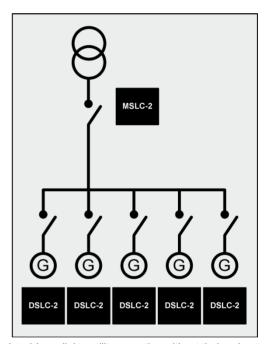


Figure 8-2: Multiple generators in isolated / parallel to utility operation without tie-breakers

© Woodward Page 191/253

Applications with Segmenting

The segmenting is to make in each application where the common busbar can be separated into two or more segments. The segment numbers have to follow a line and shall not branch. The information which segments are connected coming by discrete inputs terminals 141 to 148. All DSLC-2 and MSLC-2 have the same discrete inputs to control the segmenting. The 8 segment connection feedbacks are over-all the same and are linked by logic 'OR'. The information is exchanged over network. In all these cases in Menu 5, *Basic segment number* (parameter 4544) of each unit is configured according to the location of the unit. The rules for setting up the segment numbers are shown in chapter "Prestart Setup Procedure" on page 141.

At next are shown some examples which are covered by the DSLC-2 / MSLC-2 system.

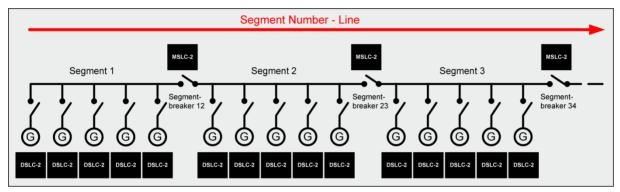
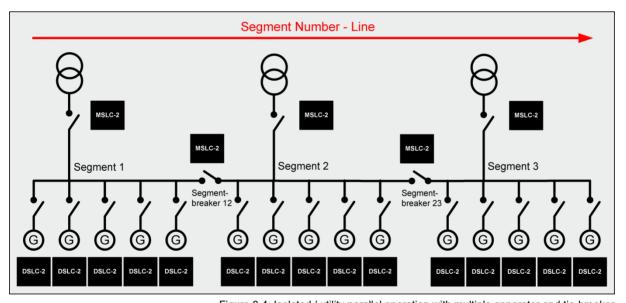



Figure 8-3: Isolated operation with multiple generator and tie-breaker

 $\label{lem:eq:figure 8-4: Isolated / utility parallel operation with multiple generator and tie-breaker} \\$

Page 192/253 © Woodward

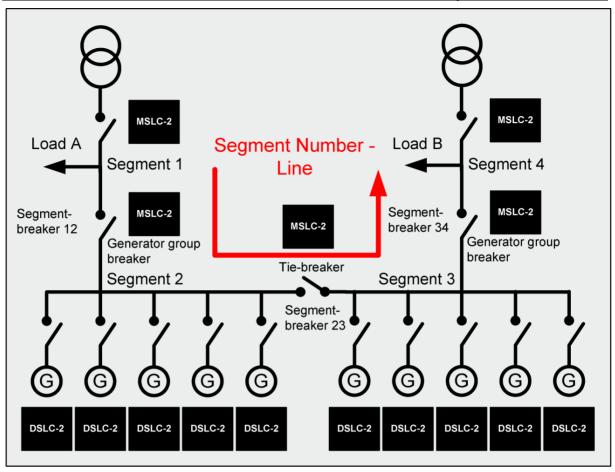


Figure 8-5: Isolated / utility parallel operation with multiple generator, tie-breaker and generator group breaker

Figure 8-5 shows an application with 2 utility feeder breakers, 2 load segments and 2 generator group breakers. The segment line begins at the left side with the load A segment (segment no.1) and ends with the load B segment (segment no.4) at the right side.

© Woodward Page 193/253

Isolated Operation (ring topology)

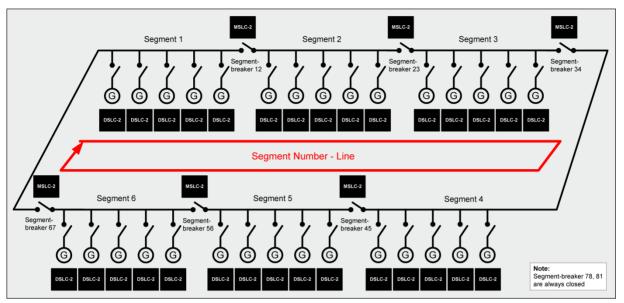


Figure 8-6: Isolated operation with multiple generator and tie-breaker (ring option)

Figure 8-6 shows an application with multiple generators connectable to a ring with tie-breaker. However segments are in use, the last not used segment connectors are be bridged as closed at one of the units.

Special Function - Synchronizing the last breaker in a ring structure

For the case the last tie breaker shall be closed in a ring structure the respectively MSLC-2 synchronizes the breaker without guiding voltage and frequency. But the tolerances for voltage and phase angle must be extended.

- 1. Extend the *voltage window* to the value, given with parameter 4718
- 2. Extend the *phase angle window* to the value, given with parameter 4717 for phase window positive and phase window negative

Page 194/253 © Woodward

Not Supported Applications

A main rule in the segmenting is that segment numbers have to follow a line without branches. At next are shown some application examples which are not covered by the DSLC-2 / MSLC-2 system. The application in Figure 8-7 and Figure 8-8 shows how the segment number line can branch. Another indication is the need for a segment breaker between segment 3 and 5, which does not exists.

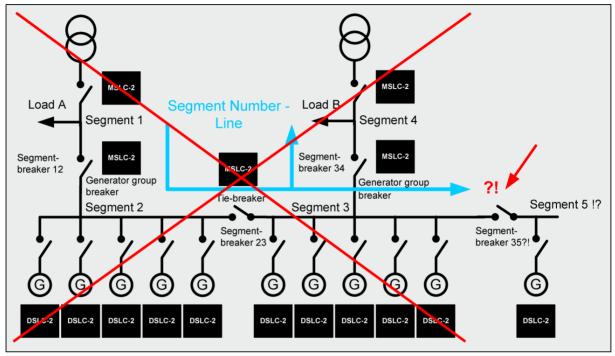


Figure 8-7: Not supported application

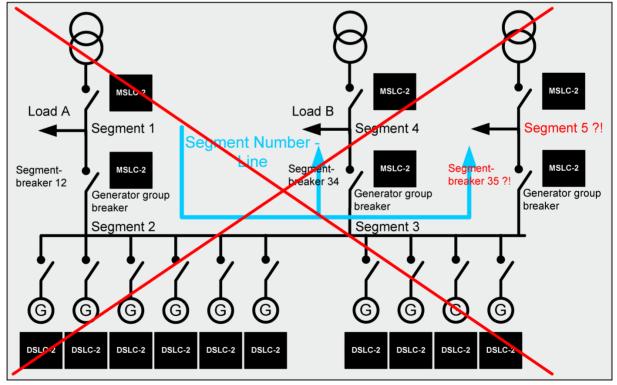


Figure 8-8: Not supported application

© Woodward Page 195/253

Remote Control by PLC

The DSLC-2XT / MSLC-2XT system offers three Ethernet network and one serial interface RS-485. Ethernet network A and network B are the dedicated communication busses for the Woodward own UDP message system, which is used to exchange information between all units in the network. In Menu 5.1 the "Network A –UDP TCP/IP address" (parameter 5330) must be configured accordingly. Each unit gets its own address usually related to the own *Device number* (parameter 1702).

Ethernet network A and Ethernet network B can be used for visualization and remote control of all units. The protocol here used is Modbus TCP. In Menu 5.1 the "Network B – Modbus TCP/IP address" (parameter 5430) must be configured accordingly. Each unit gets its own address usually related to the own *Device number* (parameter 1702).

The DSLC-2XT / MSLC-2XT provides additionally in comparison to the former DSLC-2 / MSLC-2 system a network Ethernet C. This network can now be used for ToolKit or further Modbus TCP access.

Please note that the Ethernet C network is not independent and needs an own network mask to be configured.

NOTE

Because the device has 3 Ethernet ports internally operated with a switch (A , B and C) it is important to make sure that the network addresses of all ports are different!

NOTE

IP address range 224.0.0.0 to 239.255.255.255

This address range is restricted for specific use (multicast class D addresses) and not usable for the Ethernet IP configuration from network A, B and C.

NOTE

The device can support up to 10 Modbus TCP connections independent on the port at one time.

The former DSLC-2 / MSLC-2 supports max. 5 Modbus TCP connections per port.

NOTE

The device closes its Modbus TCP connection after 2 seconds if no communication activity is detected anymore.

The former DSLC-2 / MSLC-2 close their port after 20 seconds inactivity.

Page 196/253 © Woodward

The device offers furthermore a serial RS-485 connection for visualization and remote control. The visualization can be done simultaneously by Ethernet and RS-485. In Menu 5.1 the "Modbus Serial Interface 2 Modbus slave ID" (parameter 3188) must be configured accordingly. Each unit gets its own slave ID usually related to the own *Device number* (parameter 1702).

NOTE

The remote control must be configured for either RS-485 or Ethernet. The DSLC-2 / MSLC-2 allow distribute functions to discrete inputs and to protocol bits.

Interface Connection via RS-485 with Modbus Protocol

The DSLC-2 / MSLC-2 system provides a RS-485 Modbus connection. Each unit gets an own Modbus slave address. The DSLC-2 as the MSLC-2 allows to configure each parameter or to inform about each measurement value and binary information. For visualization the unit offers a special mapped Modbus table with all important values refer to "Data Protocol 5200" on page 228.

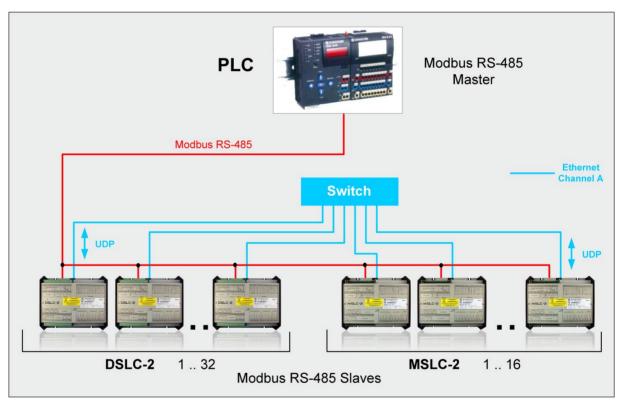


Figure 8-9: Visualization and remote control by PLC via RS-485 interface

© Woodward Page 197/253

Interface Connection via Ethernet by Modbus/TCP Stack

The MSLC-2XT / DSLC-2XT system provides the Ethernet channels A, B or C for Modbus/TCP connection. Each unit gets an own Modbus slave address. The DSLC-2 as the MSLC-2 allows to configure each parameter or to inform about each measure.

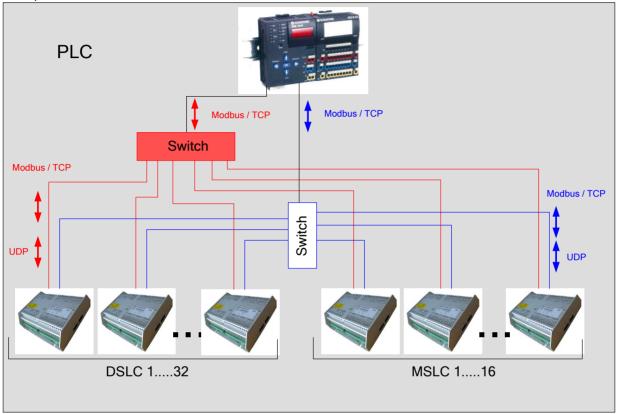


Figure 8-10: Visualization and remote control by PLC via Ethernet Modbus/TCP interface

Page 198/253 © Woodward

Chapter 9. Interface

Interface Overview

The device has several communication interfaces which are described below.

Figure 9-1: MSLC-2 - interface overview (housing - side view)

Number	Labeled	Interface / Protocol
1	LAN A (Ethernet Network A)	UDP protocol ToolKit (ServLink) Modbus (Protocol 5200)
2	LAN B (Ethernet Network B)	UDP protocol (redundant) ToolKit (ServLink) Modbus (Protocol 5200)
3	LAN C (Ethernet Network C)	ToolKit (ServLink) Modbus (Protocol 5200)
4	SERVICE (USB)	ToolKit (ServLink)
5	CAN #3	Not used
6	CAN #1	Not used
7	RS-485 #1	Modbus (Protocol 5200)
8	CAN #2	Not used

Table 9-1: MSLC-2 - Interfaces - overview

RJ-45 Ethernet Interfaces (Network A, Interface 1; Network B, Interface 2, Network C, Interface 3))

Redundant Standard Ethernet ports Network A and Network B for device interconnection (UDP Protocol) and PLC connection (TCP/IP Protocol).). The redundancy is configurable with parameter 7809 Ethernet communication mode = single or redundant.

RS-485 Serial Interface 3 (Interface #7)

A freely configurable RS-485 Modbus RTU Slave interface is provided to add PLC connectivity. It is also possible to configure the unit, visualize measured data and alarm messages and control the unit remotely.

© Woodward Page 199/253

Communication management

Redundant Bus topology

In general: if a bus fails, it shall be switched automatically to the other bus and an alarm shall be activated.

Each unit in the network system is displayed in the overview screen. The status of each unit can be recognized. The display "Unit ID available" (see OVERVIEW PAGE screens) helps the operator to detect, where a defect unit or wire is located.

What happens if only Network A fails?

All functions are fully maintained. The alarm "7792 Network A error" is triggered on all devices. The device, which cannot successfully send data over the Network A, sets in addition the alarm "4615 Communication error network A". In the ToolKit overview diagram DSLC2 and MSLC2 it can be detected via the information "Unit ID available", which device is down.

What happens if only Network B fails?

All functions are fully maintained. The alarm "7793 Network B error" is triggered on all devices. The device, which cannot successfully send data over the Network B, sets in addition the alarm "7787 Communication error network B". In the ToolKit overview diagram DSLC2 and MSLC2 it can be detected via the information "Unit ID available", which device is down.

What happens if both Network A and Network B are down to one device?

The alarm "Missing member" is triggered on all devices. In addition, alarms, as described subsequently are issued.

What happens if both Network A and Network B fail?

The alarms "7792 Network A error" and "7793 Network B error" are triggered on each device. The device, which no longer can successfully send data over the Network A and / or Network B, sets in addition the alarms "4615 Communication error network A" and / or "7787 Communication error network B". In the ToolKit overview pages DSLC2 and MSLC2 it can be detected via the information "Unit ID available", which device is down.

Single Bus topology

In general: if a network (Network A) fails, it shall be switched automatically to droop if configured and an alarm shall be activated.

Each unit in the network system is displayed in the overview screen. The status of each unit can be recognized. The display "Unit ID available" (see OVERVIEW PAGE screens and tables below) helps the operator to detect, where a defect unit or wire is located.

What happens if Network A fails

The alarm "4617 Missing member" is triggered on each device. The device, which can no longer successfully send data over the Network A, sets in addition the alarm "4615 Communication error network A". In the overview diagram DSLC2 and MSLC2 it can be detected via the information "Unit ID available", which device is down.

Page 200/253 © Woodward

Visualization of the Bus System

ToolKit Overview pages DSLC2 / MSLC2

The overview pages from DSLC2 and MSLC2 are showing the state of the networks in the field "Unit ID available" in the view of a single unit. The dedicated description is shown in the previous chapters.

ToolKit Homepage

In the ToolKit Home page the actual number of teached units is shown in a field. A red LED still indicates "Missing member alarm like it is in Release 1.

ToolKit - Status Control Monitoring of Alarms

On the page Menu 8, the following Alarms are displayed:

- Communication error Network A
- Communication error Network B
- Network A Error
- Network B Frror
- Devices not matched

Commissioning of the Communication Network System

Precondition:

- All interfaces are wired.
- The correct equipment configuration is installed.
- All single overview pages (page 138ff) display the corresponding status.

If not:

- · Check the configuration of the device
- Check and repair wiring
- Check and update configuration(s)
- Go for System update parameter 7789 to teach the correct system status.

NOTE

The system update process described below can be executed on each of the devices recognized under each other.

System update process

The System update process can be started by

- energizing DI 23 "System update" or
- using the parameter 7789 System update in ToolKit or
- sending the System update signal by communication interface (see page 208 for details)

NOTE

The DI 23 e.g., can be handled by a push button. The unit reacts on a rising edge.

With this command the according device sends a system update signal for 30 seconds to all connected devices on the network. During this time the DSLC / MSLC Ethernet network system will be updated on the current network constellation. Single Bus or redundant bus will be incorporated. During the system update process, the CPU OK LED on cover of the DSLC-2 is flashing.

After this procedure all corresponding alarms should disappear and the correct number of participants is recognized, displayed, and stored in parameter 7791 *Number of devices in system*. In case Network A and/or Network B are not available the according alarms are (still) activated.

© Woodward Page 201/253

Changing a device in a running system

First it is to check whether there is not yet a "Missing member" alarm active on the Ethernet network. If this alarm is active the reason for this is to clarify first. Otherwise the system update procedure would fade out this alarm situation.

- 1. The operator sends a system update command to the whole system by DI23 "System update". Then within the next 30 seconds he powers-off the particular device. After these 30 seconds the other controls are accepting the new constellation and monitor the network with one device lesser. No missing member alarm will occur!
- 2. The operator changes now the device and takes care that the communication network is not reconnected as long he has not configured the device correctly. If the device is configured correctly, he can reconnect the network.
- 3. After repowering and reconnecting the device, the system will automatically report that the system is over determined (by this changed device). It requests a new system update through the information "Add device" in the overview page. After checking this, the operator executes a new system update command. The alarm will disappear, if all works correct. The missing device monitor will take from now on this additional member into account.

Switching off a device in a running system (i.e. servicing the engine)

First it is to check whether there is not yet a "Missing member" alarm active on the Ethernet network. If this alarm is active the reason for this is to clarify first. Otherwise the system update procedure would fade out this alarm situation.

The operator sends a system update command to the whole system by DI23 "System update".
 Then within the next 30 seconds he powers-off the particular device. After these 30 seconds the other controls are accepting the new constellation and monitor the network with one device lesser. No missing member alarm will occur!

Adding a device to a running system (i.e. Commissioning new Genset)

First it is to check whether there is not yet a "Missing member" alarm active on the Ethernet network. If this alarm is active the reason for this is to clarify first. Otherwise the system update procedure would fade out this alarm situation.

After configuration, connecting and powering the device, the system will automatically report that the system is over determined. It requests a new system update through the information "Add device" in the overview page. After checking this, the operator executes a new system update command. The alarm will disappear, if all works correct. The missing device monitor will take from now on this additional member into account.

Page 202/253 © Woodward

Ethernet Load Sharing

Multi-Master Principle

It is important to know that the load share and load-dependent start/stop functionality is subject to a multi-master principle. This means that there is no dedicated master and slave function. Each MSLC-2 decides for itself how it has to behave. The benefit is that there is no master control, which may cause a complete loss of this functionality in case it fails. Each control is also responsible for controlling common breakers like a mains circuit or generator group breaker.

Load Share Monitoring

The MSLC-2 provides the following monitoring function for load sharing:

Multi-Unit Missing Members

The multi-unit missing members monitoring function checks whether all participating units are available (sending data on the Ethernet line).

Switches

Please use a 10/100 Mbit/s Ethernet switch if more than two devices should be connected.

General Load Share Information

The maximum number of participating DSLC-2 devices for load sharing is 32. The maximum number of MSLC-2 devices is 16.

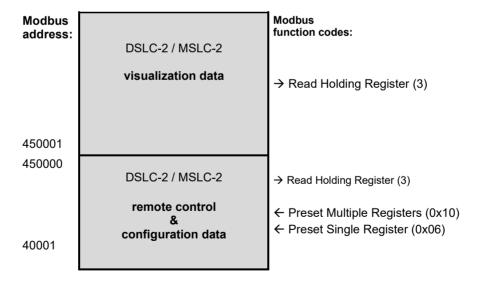
The following parameters affect the bus load:

- · Baud rate
- · Transfer rate of load share messages
- Visualization

© Woodward Page 203/253

Modbus Communications

General Information


Modbus is a serial communications protocol published by Modicon in 1979 for use with its programmable logic controllers (PLCs). It has become a de facto standard communications protocol in industry and is now the most commonly available means of connecting industrial electronic devices. The DSLC-2 / MSLC-2 support a Modbus RTU Slave module. This means that a Master node needs to poll the slave node. Modbus RTU can also be multi-dropped, or in other words, multiple Slave devices can exist on one Modbus RTU network, assuming that the serial interface is a RS-485. Detailed Information about the Modbus protocol is available on the following website: https://www.modbus.org/specs.php

There are also various tools available on the internet. We recommend using ModScan32 which is a Windows application designed to operate as a Modbus Master device for accessing data points in a connected Modbus Slave device. It is designed primarily as a testing device for verification of correct protocol operation in new or existing systems. It is possible to download a trial version from the following website:

http://www.win-tech.com/html/modscan32.htm

Address Range

The DSLC-2 / MSLC-2 Modbus Slave module distinguishes between visualization data and configuration & remote control data. The different data is accessible over a split address range and can be read via the "Read Holding Register" function. Furthermore, the parameters and remote control data can be written with the "Preset Single Registers" function or "Preset Multiple Registers.

NOTE

All addresses in this document comply with the Modicon address convention. Some PLCs or PC programs use different address conventions depending on their implementation. Then the address must be increased and the leading 4 may be omitted.

Please refer to your PLC or program manual for more information. This determines the address sent over the bus in the Modbus telegram. The Modbus starting address 450001 of the visualization data may become bus address 50000 for example.

Page 204/253 © Woodward

Visualization

The visualization over Modbus is provided in a very fast data protocol where important system data like alarm states, AC measurement data, switch states and various other information may be polled. According to the DSLC-2 / MSCL-2 Modbus addressing range, the visualization protocol can be reached on addresses starting at 450001. On this address range it is possible to do block reads from 1 up to 128 Modbus registers at a time.

Modbus Read Addresses	Description	Multiplier	Units
450001	Protocol-ID, always 5200		
450002	Scaling power		
		•••••	
450171	Remote load reference input	0.1	kW

Table 9-2: Modbus - address range block read

NOTE

Table 9-2 is only an excerpt of the data protocol. It conforms to the data protocol 5200 that is also used by Ethernet. Refer to "Data Protocol 5200" on page 228 for the complete protocol.

The following ModScan32 screenshot shows the configurations made to read the visualization protocol with a block read of 128 registers.

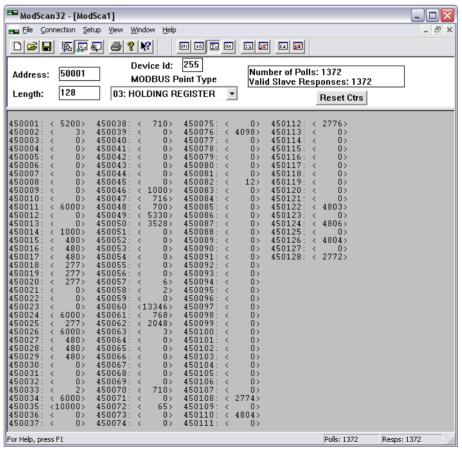


Figure 9-2: Modbus - visualization configurations

© Woodward Page 205/253

Configuration

The Modbus interface can be used to read/write parameters of the DSLC-2 / MSLC-2. According to the DSLC-2 / MSLC-2 Modbus addressing range for the configuration addresses, the range starts at 40001 and ends at 450000. You can always access only one parameter of the system in this address range. The Modbus address can be calculated depending on the parameter ID as illustrated below:

	Parameter ID < 10000	Parameter ID >= 10000
Modbus address =	40000 + (Par. ID+1)	400000 + (Par. ID+1)

Table 9-3: Modbus - address calculation

Block reads in this address range depend on the data type of the parameter. This makes it important to set the correct length in Modbus registers which depends on the data type (UNSIGNED 8, INTEGER 16, etc.). Refer to Table 9-4 for more information.

Device types	Modbus registers
UNSIGNED 8	1
UNSIGNED 16	1
INTEGER 16	1
UNSIGNED 32	2
INTEGER 32	2
LOGMAN	7
TEXT/X	X/2

Table 9-4: Modbus - data types

If Modbus commands are sent via TCP/IP packages in Network A or B, dedicated Modbus slave addresses are configurable for Network A as well as for Network B.

The default slave addresses for Network A and B are 255.

Page 206/253 © Woodward

MSLC-2 Interface Remote Control

For a remote setting of the control setpoints, it is necessary to use the interface setpoints instead of the internal setpoints. No password is required to write this value. All other setpoint sources are configured accordingly. Control orders can be sent via Ethernet (Modbus/TCP) or RS-485 Modbus RTU.

Sending Setpoints Over Interface

Some setpoints can be sent over the communication interface.

ID	Parameter	CL	Setting range	Default	Description	
7642	Active power setpoint for import/ export control		1 kW to 999999,9 kW	- Setpoint for the active power control. The setpoint is a long integer 32 to provide a wide range from 1 kW to 999999.9 kW. Negative values are not allowed. Example: 1000 kW = 1000 = 3E8Hex Note: This setpoint will be only accepted when the parameter Load control setpoint source (parameter 7634) is configured to "Interface".		
7640	Setpoint power factor import/ export	-	-500 to 1000 to 500	- The power factor is set as a value (integer 16) between -500to 1000 to 500. A negative value is capacitive, a positive value is inductive, 1000 = cosφ 1. Other values are not accepted by the unit. Example:		
7641	Frequency Setpoint		0 to 7000 1/100 Hz		Setpoint Generator Frequency Control [Hz*100] Example: 50.00Hz = 5000 = 1388Hex Note: This setpoint will be only accepted when the parameter Freq. control setpoint source (parameter 7783) is configured to "Interface"	
7780	Voltage Set- point		50 to 650000 V		Voltage Setpoint for voltage control [V] Example: 400V = 400 = 190Hex 10000V = 10000 = 2710Hex Note: This setpoint will be only accepted when the parameter Voltage control setpoint source (parameter 7784) is configured to "Interface".	
7785	Basic Seg- ment number		1 to 8		Basic segment number Example: Range:1 to 8 Note: The Basic segment number will be only accepted when the parameter Basic segment number source (parameter 7786) is configured to "Interface".	

Table 9-5: Modbus – sending setpoints over interface

© Woodward Page 207/253

Sending Binary Digital Orders over Interface

Some single functions can be passed over from discrete inputs to the communication interface.

Function	Termi- nal	Controllable by
Check	67	Discrete input DI 01 or communication interface
Permissive	68	Discrete input DI 02 or communication interface
Run	69	Discrete input DI 03 or communication interface
CB Aux	70	Discrete input DI 04 fixed to DI
Voltage Raise	71	Discrete input DI 05 or communication interface
Voltage Lower	72	Discrete input DI 06 or communication interface
Base Load	73	Discrete input DI 07 or communication interface
Utility Unload	74	Discrete input DI 08 or communication interface
Ramp Pause	75	Discrete input DI 09 or communication interface
Setpoint Raise	76	Discrete input DI 10 or communication interface
Setpoint Lower	77	Discrete input DI 11 or communication interface
Process Control	78	Discrete input DI 12 or communication interface
Segment Connection 12/23/ Act.	141/142/ / 148	Discrete input DI 13/14/ /18
Imp./Exp. Control	149	Discrete input DI 21 or communication interface
Modbus Reset	150	Discrete input DI 22 fixed to DI
System Update	151	Discrete input DI 23 or communication interface

Table 9-6: Modbus – sending binary digital orders over interface

Page 208/253 © Woodward

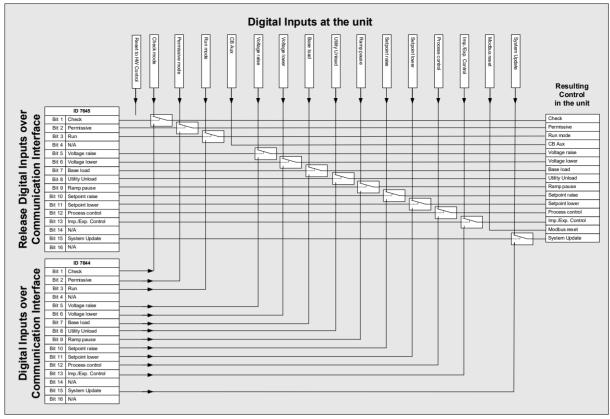


Figure 9-3: Modbus - sending binary digital orders over interface

ID	Parameter	CL	Setting range	Default	Description
7645	Release discrete in- puts over communica- tion interface				These single bits control if a function shall be switched by discrete input or communication interface. Bit 01 = 1 Check Bit 02 = 1 Permissive Bit 03 = 1 Run Bit 04 = 1 N/A Bit 05 = 1 Voltage Raise Bit 06 = 1 Voltage Lower Bit 07 = 1 Base Load Bit 08 = 1 Utility Unload Bit 09 = 1 Ramp Pause Bit 10 = 1 Setpoint Raise Bit 11 = 1 Setpoint Lower Bit 12 = 1 Process Bit 13 = 1 Imp./Exp. control Bit 14 = 1 N/A Bit 15 = 1 system update Bit 16 = 1 N/A Note: Bit {x} = 0 -> DI interface = hardware controlled Bit {x} = 1 -> DI interface = interface controlled
7644	Discrete in- puts over communica- tion interface	-	-	•	These single bits switch the single functions if they are released by parameter 7645. Bit 01 = 1 Check Bit 02 = 1 Permissive Bit 03 = 1 Run Bit 04 = 1 N/A Bit 05 = 1 Voltage Raise Bit 06 = 1 Voltage Lower Bit 07 = 1 Base Load Bit 08 = 1 Utility Unload Bit 09 = 1 Ramp Pause

© Woodward Page 209/253

ID	Parameter	CL	Setting range	Default	Description
					Bit 10 = 1 Setpoint Raise Bit 11 = 1 Setpoint Lower Bit 12 = 1 Process Bit 13 = 1 Imp/Exp. Control Bit 14 = 1 N/A Bit 15 = 1 System update Bit 16 = 1 N/A Note: Bit {x} = 0 -> DI interface = switched "Off" Bit {x} = 1 -> DI interface = switched "On"

Table 9-7: Modbus – sending binary digital orders over interface

Loss of Connection

The device sends Modbus binary digital orders via interface. The function *Release discrete inputs over communication interface* (parameter 7645) takes care if the DI interfaces are "Hardware" or "Interface" controlled. The parameter *Discrete inputs over communication interface* (parameter 7644) switches the DI interfaces to "On" or "Off". In case of a connection loss (RS-485 or Network B) the device can be controlled via "Hardware" control and overrides the original setting of parameter 7645. The following paragraph describes the function in detail.

Interface Control Fails

- 1. Interface connection loss (RS-485 or Network B).
- 2. The conditions of the discrete inputs (DI) will remain in their current settings, even in the case of interface connection loss.
- 3. Please configure the discrete inputs via hardware switches to the desired settings.
- 4. To regain system control, please energize DI 22 "Modbus Reset" via hardware switch (overrides the original settings of parameter 7645; the control bits will reset to value "0").
- 5. Now all discrete inputs are "Hardware" controlled.

Switch Back To Interface Control

- 1. The discrete inputs (DI) are currently "Hardware" controlled.
- 2. The interface connection is working again.
- 3. Please de-energize DI 22 "Modbus Reset" via hardware switch to be able to configure parameter 7645 to "Interface" control.
- 4. The settings of parameter 7644 remain in their last configuration if there was no interrupt of the power supply. We highly recommend double-checking the settings. Please check the conditions of the DIs in Menu 9 (Notification: DI = "Hardware" controlled; Notification: Com = "Interface" controlled).
- 5. Now you must configure the discrete inputs in parameter 7645 to "Interface" control.
- 6. Now the discrete inputs are again "Interface" controlled.

NOTE

The DI's "CB Aux" and "Modbus Reset" are in general hardware controlled and cannot be changed via interface.

Page 210/253 © Woodward

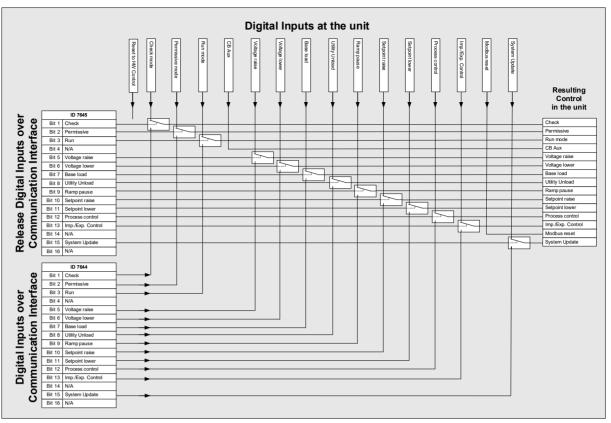


Figure 9-4: Modbus - loss of connection

Example 1: Active Power Interface Setpoint Baseload

The setpoint for active power control is a long integer to provide a wide range from 1 to 999999.9 kW. Negative values are not allowed. This setpoint will be accepted, if the power setpoint manager of the unit passes the setpoint through.

The active power setpoint value must be written to parameter 7642.

Example:

A power value of 500 kW = 500 (dec) = 01F4 (hex) is to be transmitted.

Modbus address = 40000 + (Par. ID + 1) = 407642.

Modbus length = 2 (INTEGER 32).

The high word is to be written to the lower address and the low word is to be written to the higher address.

The following ModScan32 screenshots show how to set the parameter address 7642 in ModScan32.

© Woodward Page 211/253

Open the preset multiple registers window by selecting Setup > Extended > Preset Regs from the menu.

Select OK and enter the desired values.

Select Update to take over the entered values.

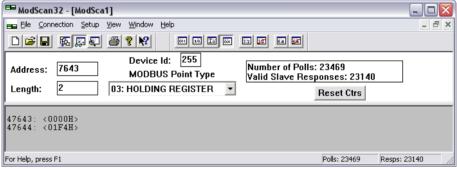


Figure 9-5: Modbus - configuration example 1 - active power

Page 212/253 © Woodward

Example 2: Power Factor Interface Setpoint

The setpoint for the power factor control is set as a value between -500 to -999, 1000, 999 to 500. A negative value is capacitive, a positive value is inductive, 1000 = cosphi 1. Other values are not accepted by the unit. This setpoint will be accepted, if the power factor setpoint is selected via ToolKit.

The power factor setpoint value must be written to parameter 7640.

Example:

A power factor of 1 = 1000 (dec) = 03E8 (hex) is to be transmitted. Modbus address = 40000 + (Par. ID + 1) = 40509. Modbus length = 1 (UNSIGNED 16).

The following Modscan32 screenshot shows the settings made to parameter address 7640 in Mod-Scan32.

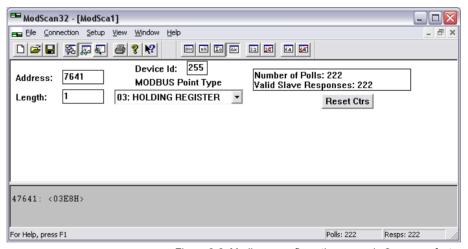


Figure 9-6: Modbus - configuration example 2 - power factor

© Woodward Page 213/253

Changing Parameter Settings via RS485

Parameter Setting

NOTE

The example tables below are excerpts of the parameter list in Chapter: "Configuration & Operation".

NOTE

Be sure to enter the password for code level 2 or higher for the corresponding interface to get access for changing parameter settings.

NOTE

The new entered value must comply with the parameter setting range when changing the parameter setting.

Example 1: Addressing the password for RS 485:

Par. ID.	Parameter	Setting range	Data type
10430	Password for serial interface1	0000 to 9999	UNSIGNED 16

Table 9-8: Modbus - password for serial interface 2 (RS 485)

Modbus address = 400000 + (Par. ID + 1) = 410431

Modbus length = 1 (UNSIGNED 16)

Example 2: Addressing the generator rated voltage:

Par. ID.		Parameter	Setting range	Data type
	1766	Generator rated voltage	50 to 650000 V	UNSIGNED 32

Table 9-9: Modbus – generator rated voltage

Modbus address = 40000 + (Par. ID + 1) = 41767

Modbus length = 2 (UNSIGNED 32)

The following Modscan32 screenshot shows the configurations made to address parameter 1766.

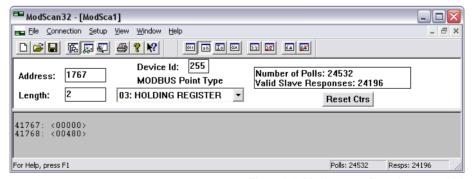


Figure 9-7: Modbus - configuration example 2

Example 3: Addressing the generator voltage measuring:

Page 214/253 © Woodward

Par. ID.	Parameter	Setting range	Data type
1851	Generator voltage measuring	3Ph 4W	UNSIGNED 16
		3Ph 3W	
		n/a	
		n/a	
		3Ph 4WOD	

Table 9-10: Modbus – generator voltage measuring

Modbus address = 40000 + (Par. ID + 1) = 41852

Modbus length = 1 (UNSIGNED 16)

NOTE

If the setting range contains a list of parameter settings like in this example, the parameter settings are numbered and start with 0 for the first parameter setting. The number corresponding with the respective parameter setting must be configured.

The following Modscan32 screenshot shows the configurations made to address parameter 1851, which is configured to "3Ph 4W".

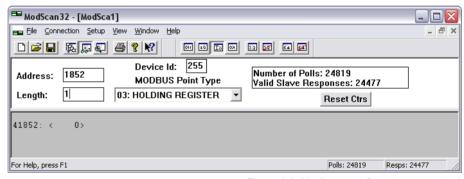


Figure 9-8: Modbus - configuration example 3

© Woodward Page 215/253

Remotely Resetting the Default Values

Modbus via RS-485 or Modbus TCP/IP

It is possible to remotely reset the unit to its default values through Modbus (via RS-485) or Modbus TCP/IP using the parameter 10417 and 1701. The required procedure is detailed in the following steps.

Par. ID.	Parameter	Setting range	Data type
10417	Factory default settings	Yes / No	UNSIGNED 16
1701	Reset factory default values	Yes / No	UNSIGNED 16

Table 9-11: Modbus - reset default values

In order to enable the resetting procedure, parameter 10417 must be enabled.

Example:

The resetting procedure has to be enabled.

Modbus address = 40000 + (Par. ID + 1) = 410418

Modbus length = 1 (UNSIGNED 16)

The following Modscan32 screenshot shows the settings made to parameter 10417 in ModScan32. It is possible to set the format to decimal to view the value using the "display options".

Figure 9-9: Modbus - remote control parameter 1701

By double-clicking the address, a Write Register command is issued. The following screenshot shows how the parameter is enabled using the ModScan32 Software. The value must be set to "1" to enable the parameter.

Figure 9-10: Modbus - write register - enable the resetting procedure via USB or Modbus TCP/IP

Page 216/253 © Woodward

In order to reset the default values, parameter 1701 must be enabled.

Example:

The default values are to be reset.

Modbus address = 40000 + (Par. ID + 1) = 41702

Modbus length = 1 (UNSIGNED 16)

The following Modscan32 screenshot shows the settings made to parameter 1701 in ModScan32. It is possible to set the format to decimal to view the value using the "display options".

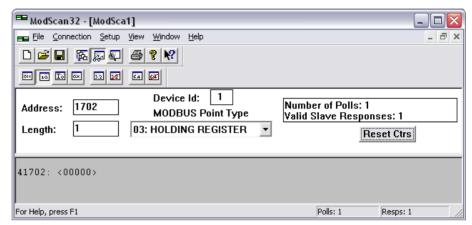


Figure 9-11: Modbus - remote control parameter 1701

By double-clicking the address, a Write Register command may be issued. The following screenshot shows how the parameter is enabled using the ModScan32 Software. The value must be set to "1" to enable the parameter.

Figure 9-12: Modbus - write register - resetting the default values

© Woodward Page 217/253

Modbus Parameters

NOTE

The following parameters are available for configuring the Modbus modules on the Serial Interfaces. Refer to Chapter: "Configuration & Operation" for detailed information about all parameters.

Serial Interface 2 (RS 485)

Parameter table

ID	Text	Setting range	Default value
Configure RS-485 interfaces: serial interface 2			
3188	Modbus Slave ID	0 to 255	33
3189	Reply delay time	0.00 to 2.55 s	0.00 s

Table 9-12: Modbus - serial interface 2 - parameters

Network A, B, C - Modbus TCP

For Modbus TCP parameters refer to

- Network A UDP / Modbus
- Network B UDP / Modbus
- Network C Modbus

Page 218/253 © Woodward

Chapter 10. Application

Phase Angle Compensation

This feature allows the MSLC-2 to adapt the phase angle measurement system according to the transformer type. The phase angle of the "System B to System A" measurement can be compensated.

The controller provides an adjustment for a phase angle deviation in a range of +/-180.0: "Phase angle MCB" (parameter 8842). This parameters compensate the phase angle deviation, which can be caused by transformers (i.e. a delta to wye transformer) located within the electrical system. The phase angle compensation is activated with the parameter "Phase angle compensation MCB" (parameter 8841).

WARNING

Ensure the parameters are configured correctly to prevent erroneous synchronization settings. Incorrect wiring of the system cannot be compensated with this parameter!

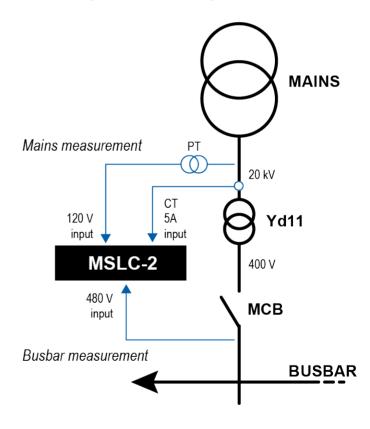
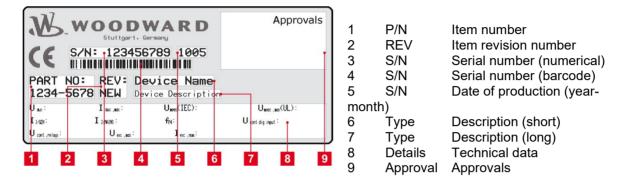


Fig. 201: Phase angle compensation MCB

Example


Using the vector group 11 (Yd11) it counts α = 11 x 30 ° = 330 °. Because 330 ° > 180 ° and MSLC mains measurement is connected to the high voltage side this results into (-360 ° + α) to be used as phase difference. Enter -30 ° into as parameter for the phase difference Mains/Busbar.

© Woodward Page 219/253

Appendix A Technical Specifications

Technical Data

Nameplate

Measuring Values

Measuring values (voltages) – wye/delta voltage		
Measuring voltages	398/690 VAC	
 Rated value (V_{LLrated}) 	100 VAC up to 690 VAC	
 Maximum value (V_{LLmax}) 	max. 897 VAC	
Rated voltage phase – ground	600 VAC	
Rated surge voltage	6.0 kV	
Linear measuring range	1.3 × Vrated	
Measuring frequency	50/60 Hz (30.0 to 85.0 Hz)	
Accuracy	Class 0.5	
Input Resistance per path	2.5 ΜΩ	
Maximum power consumption per path	< 0.15 W	

Currents

For correct measuring with external CT the input must be one side grounded by the customer.

Measuring values (currents) – galvanically isolated		
Measuring current	Rated value (Irated)	/1 A or/5 A
Accuracy	Class 0.5	
Linear measuring range	1.5 × Irated	
Maximum power consumption per path	< 0.10 VA	
Rated short-time current (1 s)		50.0 A

Page 220/253 © Woodward

Ambient Variables

Ambient variables	
Power supply	12/24 VDC (8 to 40.0 VDC), SELV
Intrinsic consumption	max. 32 W
Insulation voltage	Marine applications 40 Vdc
Insulation test voltage (1 s)	100 Vdc
Overvoltage (≤ 2 min)	80 Vdc
Reverse voltage protection	Over the full supply range
Input capacitance	5,000 μF
Unit Power Supply	Negative potential grounded or positive potential grounded or ungrounded
Degree of pollution	2
Maximum elevation	4,000 m ASL

Digital Inputs

Discrete inputs – galvanically isolated		
Input range (V _{cont. dig. input})	Rated voltage 12/24 Vdc (8 to 40.0 Vdc)	
Input resistance	Approx. 20 kΩ	

Digital Outputs

Discrete outputs – galvanically isolated, potential free		
Contact material	AgNi	
	AC	2.00 Aac@250 Vac
		2.00 Adc@24 Vdc
		0.36 ADC@125 VDC
		Not suitable for USA and Canada
General purpose (GP) (V _{cont, relays})	DC	applications. Not evaluated by UL.
		0.18 ADC@250 VDC
		Not suitable for USA and Canada
		applications. Not evaluated by UL.
Pilot duty (PD) (V _{cont, relays})	AC	B300

Analog inputs AI 01-03 (Type 2: 0/4 to 20 mA | 0 to 10 V)

Analog inputs (not isolated) – freely scalable		
Maximum permissible voltage against PE (Ground)	100 V	
Resolution	14 Bit	
0/4 to 20 mA input	Internal load 249 Ω	
0 to 10 V input	Input resistance approx. 80 kΩ	
Accuracy	±0.5% related to 10V	

© Woodward Page 221/253

Interfaces

Interface		
USB (slave) USB 2.0 interface	Galvanically isolated	
• Type	USB 2.0 standard; slave (Type B)	
Data rate	max. 12 Mbit/s	
Bus Voltage	5 V	
Current consumption	approx. 10 mA	
RS-485 interface	Galvanically isolated	
 Insulation voltage (continuously) 	100 Vac	
 Insulation test voltage (1 s) 	1700 VDC	
Version	RS-485 Standard	
Ethernet interface	Galvanically isolated Only one MAC ID is required	
Insulation voltage (continuously)	100 VAC	
 Insulation test voltage (1 s) 	1700 VDC	
Version	Ethernet 10/100Base-T/TX	
Ethernet plug socket	RJ45 standard, shielded 2 LEDs to indicate communication.	
Ethernet cable	CAT 5 or 5e (class D) Shielding: F/UTP according to ISO/IEC 11801 (foil overall shielding, pairs unshielded)	
Green LED	Indicates link activity (blinking during data transmission)	
Yellow LED	Indicates link status (regarding speed): 10 Mb/s: LED switched-off 100 Mb/s: LED switched-on	
 Internal shield termination 	Available	

Real Time Clock Battery

Battery		
Туре	Lithium	
Life span (operation without power supply)	Approx. 5 years	
Battery field replacement	Not allowed. Please contact your Woodward service partner.	

Housing

Housing	
Туре	Sheet metal → Custom
Dimensions (W × H × D)	Sheet metal → 250 × 227 × 84 mm (9.84 × 9.00 × 3.30 in)
Wiring	Screw-plug-terminals 2.5 mm²
Recommended locked torque	4 inch pounds / 0.5 Nm Use 90°C copper wire only Use class 1 wire only or equivalent
Weight	approx. 2,480 g (5.46 lbs)

Protection

Protection	
Protection system	IP 20

Page 222/253 © Woodward

Approvals

Certifications	
EMC test (CE)	Tested according to applicable EMC standards. Refer to ╚⇒ "8.2 Environmental Data" for details
Listings	CE marking UL, Ordinary Locations, File No.: E231544 UL recognized component, category FTPM2/8, File No.: E347132 cUL CSA EAC
Marine	Type approval: Lloyds Register (LR) Type approval: American Bureau of Shipping (ABS)
Generic note	
Accuracy	Is referred to full scale value

Table 0-1: Technical Data

Environmental Data

Vibration

Vibration	
Sine Sweep	Acceleration: 4G; Frequency Range: 5 Hz to 100 Hz
Standards	EN 60255-21-1 (EN 60068-2-6, Fc) EN 60255-21-3 Lloyd's Register, Vibration Test2 SAEJ1455 Chassis Data
Random vibration	Frequency Range: 10 Hz to 500 Hz Power Intensity: 0.015G² / Hz RMS Value: 1.04 Grms
Standards	MIL-STD 810F, M514.5A, Cat.4, Truck/Trailer tracked-restrained Cargo, Fig. 514.5-C1

Shock

Shock	
Shock	40G, Saw tooth pulse, 11 ms
Standards	MIL-STD 810F, M516.5, Procedure 1

Temperature

Temperature	
Cold, Dry Heat (storage)	-40 °C (-40 °F) / 80 °C (176 °F)
Cold, Dry Heat (operating)	-40 °C (-40 °F) / 70 °C (158 °F)
Standards	IEC 60068-2-2, Test Bb and Bd IEC 60068-2-1, Test Ab and Ad

© Woodward Page 223/253

Humidity

	Humidity	
أ	Humidity	60 °C, 95% RH, 5 days
	Standards	IEC 60068-2-30, Test DB

Marine environmental categories

Marine Environmental Categories	
Lloyd's Register of Shipping (LRS)	ENV1, ENV2, ENV3 and ENV4

Table 0-2: Environmental data

Electromagnetic Compatibility

Electromagnetic Compatibility	
EN 61000-6-2	2005 - Electromagnetic compatibility (EMC). Generic standards. Immunity for industrial environment
EN 61000-6-4	2007 + A1: 2011 - Electromagnetic compatibility (EMC). Generic standards. Emission standard for industrial environments
EN 61326-1	2013 - Electrical equipment for measurement, control and laboratory use. EMC requirements. General requirements (according to industrial electromagnetic environment)

Page 224/253 © Woodward

Accuracy

The accuracy declaration is defined by the according measurement ranges. The rated maximum of the single ranges are taken as 100%.

This results in the definitions:

- Range 1: 69/120 V rated = 100% • Range 2: 277/480 V rated = 100%
- Range 3: 400/690 V rated = 100%

Measuring value	Display	Accuracy	Measuring start	Notes
Frequency				
Generator	15.0 to 85.0 Hz	0.1% (of 85 Hz)	5% (of PT second-	
Busbar	40.0 to 85.0 Hz	0.176 (01 65 112)	ary voltage setting) 1	
Voltage				
Wye generator / mains / busbar		0.5% , Class 0.5 ² related to:	1.5% (of PT secondary voltage setting) 1	
Delta generator / mains / busbar	0 to 650 kV	69/277/400 V (Wye) 120/480/690 V (Delta)	2% (of PT second- ary voltage setting) ¹	
Current				
Generator		0.5%		
Mains / ground current	0 to 32,000 A	(of 1/5 A) ³ Class	1% (of 1.3/6.5 A) ³	
Max. value		0.5		
Real power				
Actual total real power value	-2 to 2 GW	1% (of 69/277/400 V x 1/5 A) ^{2/3}	Starts with detecting the zero passage of current/voltage	
Reactive power				
Actual value in L1, L2, L3	-2 to 2 Gvar	1% (of 69/277/400 V x 1/5 A) ^{2/3}	Starts with detecting the zero passage of current/voltage	
Power factor				
Actual value power factor L1	Lagging 0.00 to 1.00 to leading 0.00	1%	1% (of 1.3/6.5 A) ³	1.00 is displayed for measuring val- ues below the measuring start
Miscellaneous				
Battery voltage	0 to 40 VDC	±0.5% related to 40 V	Related on the measurement range 8 to 40 V	0.5% equals 0.2 V (±0.2 V)
Phase angle	-180 to 180 °	± 1 degree	1.25% (of PT secondary volt. setting)	180 ° is displayed for measuring val- ues below measur- ing start
Analog inputs 1-3				
0 to 20 mA / 0 to 10 V	Freely scalable	±0.5% related to 20 mA ±0.5% related to 10 V		

Table 0-3: Accuracy

© Woodward Page 225/253

 $^{^{\}rm 1}$ Setting of the parameter for the PT secondary rated voltage $^{\rm 2}$ Depending on the used measuring range (120/480/690 V)

³ Depending on the CT input definition (1/5 A) by customer settings. MSLC-2XT hardware covers both 1 A and 5 A ranges.

Reference conditions (for measuring the accuracy):

- Input voltage sinusoidal rated voltage
 Input current sinusoidal rated current
 Frequency rated frequency +/- 2%
 Power supply rated voltage +/- 2%
- Power factor (cos φ) 1.00
- Ambient temperature ... 23 °C +/- 2 K
- Warm-up period 20 minutes

Page 226/253 © Woodward

Appendix B Useful Information

Connecting 24 V Relays

Interferences in the interaction of all components may affect the function of electronic devices. One interference factor is disabling inductive loads, like coils of electromagnetic switching devices. When disabling such a device, high switch-off induces voltages may occur, which might destroy adjacent electronic devices or result interference voltage pulses, which lead to functional faults, by capacitive coupling mechanisms.

Since an interference-free switch-off is not possible without additional equipment, the relay coil is connected with an interference suppressing circuit.

If 24 V (coupling) relays are used in an application, it is required to connect a protection circuit to avoid interferences. Figure 0-1 shows the exemplary connection of a diode as an interference suppressing circuit.

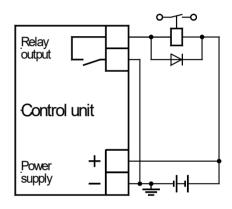


Figure 0-1: Interference suppressing circuit - connection

Advantages and disadvantages of different interference suppressing circuits are described in the following.

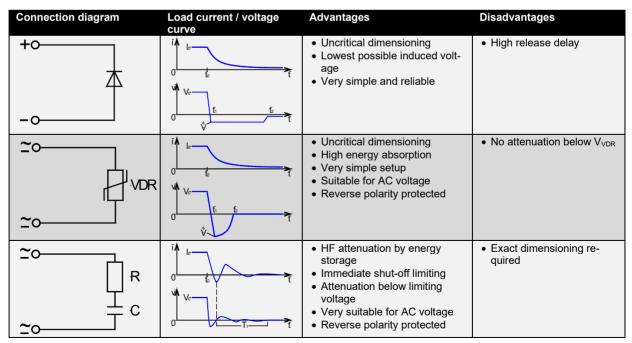


Table 0-1: Interference suppressing circuit for relays

© Woodward Page 227/253

Appendix C Data Protocols

Data Protocol 5200

Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units
50000	450001	16	signed		Protocol-ID, always 5200		
50001	450002	16	signed	3181	Scaling Power (16 bits) Exponent 10x W (5;4;3;2)		
50002	450003	16	signed	3182	Scaling Volts (16 bits) Exponent 10x V (2;1;0;-1)		
50003	450004	16	signed	3183	Scaling Amps (16 bits) Exponent 10x A (0;-1)		
50004	450005	16	signed	7732	Scaling kW, °C, kPa, bar, V, mA		
50005	450006	16			0 (reserve)		
50006	450007	16			0 (reserve)		
50007	450008	16			0 (reserve)		
50008	450009	16			0 (reserve)		
50009	450010	16			0 (reserve)		
					AC Measurement values		
50010	450011	16	signed	144	System A frequency	0.01	Hz
50011	450012	16	signed	246	System A total power	scaled defined by index 3181 (modicon Ad-	kW
50012	450013	16	signed	247	System A total reactive power	dress 450002)	kvar
50013	450014	16	signed	160	System A power factor	0.001	
50014	450015	16	signed	248	System A voltage L1-L2	scaled defined by index 3182 (modicon Ad-	V
50015	450016	16	signed	249	System A voltage L2-L3	dress 450003)	V
50016	450017	16	signed	250	System A voltage L3-L1		V
50017	450018	16	signed	251	System A voltage L1-N		V
50018	450019	16	signed	252	System A voltage L2-N		V
50019	450020	16	signed	253	System A voltage L3-N		V
50020	450021	16	signed	255	System A current 1		Α
50021	450022	16	signed	256	System A current 2		Α
50022	450023	16	signed	257	System A current 3		Α
50023	450024	16	signed	209	System B frequency	0.01	Hz
50024	450025	16	signed	254	System B voltage L1-L2 (or L1-N)	scaled defined by index 3182 (modicon Ad- dress 450003)	V

Page 228/253 © Woodward

Manual 3/94/ MSLC-2X1 - Master Synchronizer and Load Control									
Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units		
50025	450026	16	signed	147	Auxiliary System B frequency	0.01	Hz		
50026	450027	16	signed	118	Auxiliary System B voltage L1-L2	scaled defined by index 3182 (modicon Ad-	V		
50027	450028	16	signed	119	Auxiliary System B L2-L3	dress 450003)	V		
50028	450029	16	signed	120	Auxiliary System B L3-L1		V		
50029	450030	16	signed	121	Auxiliary System B L1-N		V		
50030	450031	16	signed	122	Auxiliary System B L2-N		V		
50031	450032	16	signed	123	Auxiliary System B L3-N		V		
50032	450033	16	signed	4639	Phase Angle System A / System B	0.1	0		
50033	450034	16	signed	4627	Active Setpoint frequency to DSLC	0.01	Hz		
50034	450035	16	signed	4628	Active Setpoint voltage to DSLC	0.01	%		
50035	450036	16	signed	4629	Active Setpoint load level to DSLC	0.01	%		
50036	450037	16	signed	4630	Active Setpoint reactive load level to DSLC	0.01	%		
50037	450038	16	signed	4631	Active Setpoint constant generator pow.fac. To DSLC	(-5001000500)			
50038	450039	16			0 (reserve)				
50039	450040	16			0 (reserve)				
50040	450041	16			0 (reserve)				
50041	450042	16			0 (reserve)				
50042	450043	16			0 (reserve)				
50043	450044	16			0 (reserve)				
l.				D	C Analogue Values (Engine Values)				
50044	450045	16	signed	1011 0	Battery voltage	0.1	V		
50045	450046	16	signed	1011 7	Remote Load / Process Reference Input (Al4)	000.0100.0	%		
50046	450047	16	signed	1015 1	Process Signal Input (AI5)	000.0100.0	%		
50047	450048	16	signed	7718	Power Factor (Al6)	(-5001000500)			
50048	450049	16	signed	5535	0 (reserve)				
50049	450050	16	signed	5635	0 (reserve)				
50050	450051	16			0 (reserve)				
50051	450052	16			0 (reserve)				
50052	450053	16			0 (reserve)				
50053	450054	16			0 (reserve)				
50054	450055	16			0 (reserve)				
	Control and Status								

© Woodward Page 229/253

MSLC-2XT - Master Synchronizer and Load Control

	Manual 07347 MIGEO-2A1 - MidStel Gyllollionizer and Edua Golffon								
Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units		
50055	450056	16			0 (reserve)				
50056 450057 16 sign				4636	Sync Control State				
					0: Off 1: Check mode active 2: Permissive mode active 3: Run mode active 4: Close Timer runs 5: Sync Timer runs 6: Breaker synchronized 7: Auto-Off position 8: Manual				
50057	450058	16	signed	4634	Load Control Mode				
					O: MSLC=Off (DSLC=Inactive) 1: MSLC=Inactive (DSLC=Droop) 2: MSLC=Off line (SLC=At Unload Trip) 3: MSLC=Frequency control (DSLC=Load single 4: Base load control) 5: MSLC=Import/Export control (DSLC=reseing 5: Process control) 7: MSLC=Remote process control (DSLC=reseing 6: Peak load control (reserved)) 9: Zero power control (reserved) 10: Load share (reserved) 11: Process slave (reserved)	erved)			
50058	50058 450059 16 5				Reactive Load Control Mode				
					O: MSLC=Off (DSLC=Inactive) 1: MSLC=Inactive(DSLC=Off) 2: MSLC=Off line (DSLC=Droop) 3: MSLC=Voltage control (DSLC=VAR shari 4: Reactive load control 5: MSLC=Import/Export reactive load (DSLC=6: MSLC=Const.Gen Power Factor (DSLC=7: Remote process control (reserved) 8: - (reserved) 9: Zero power control (reserved) 10: Reactive load share (reserved) 11: Process slave (reserved)	C=reserved)			
50059	450060	16	bit ar-	4151	Condition Flags	1			
			ray		0 (reserve)	Mask: 8000h	Bit		
					0 (reserve)	Mask: 4000h	Bit		
						Mask: 2000h	Bit		
						Mask: 1000h	Bit		
					Utility breaker is closed (in same segment)	Mask: 0800h	Bit		
					System B is ok (in same segment)	Mask: 0400h	Bit		
					System A is Dead	Mask: 0200h	Bit		
					System B is Dead (in same segment)	Mask: 0100h	Bit		
					System A is ok	Mask: 0080h	Bit		
					Aux. System B anti clock wise system is recognized	Mask: 0040h	Bit		
					Aux. System B clock wise system is recognized	Mask: 0020h	Bit		
						Mask: 0010h	Bit		
						Mask: 0008h	Bit		

Page 230/253 © Woodward

Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units	
					System A counter clock wise system is recognized	Mask: 0004h	Bit	
					System A clock wise system is recognized	Mask: 0002h	Bit	
						Mask: 0001h	Bit	
50060	450061	16	bit ar- ray	4156	Condition Flags 2	2		
			lay		0 (reserve)	Mask: 8000h	Bit	
					0 (reserve)	Mask: 4000h	Bit	
					0 (reserve)	Mask: 2000h	Bit	
					0 (reserve)	Mask: 1000h	Bit	
					0 (reserve)	Mask: 0800h	Bit	
					Breaker dead busbar closure request active	Mask: 0400h	Bit	
					0 (reserve)	Mask: 0200h	Bit	
					0 (reserve)	Mask: 0100h	Bit	
					0 (reserve)	Mask: 0080h	Bit	
					0 (reserve)	Mask: 0040h	Bit	
					0 (reserve)	Mask: 0020h	Bit	
					0 (reserve)	Mask: 0010h	Bit	
					0 (reserve)	Mask: 0008h	Bit	
					0 (reserve)	Mask: 0004h	Bit	
					0 (reserve)	Mask: 0002h	Bit	
					0 (reserve)	Mask: 0001h	Bit	
50061	450062	16	bit ar- ray	4155	Condition Flags 3			
			lay		0 (reserve)	Mask: 8000h	Bit	
					0 (reserve)	Mask: 4000h	Bit	
					0 (reserve)	Mask: 2000h	Bit	
					0 (reserve)	Mask: 1000h	Bit	
					Breaker is closed	Mask: 0800h	Bit	
					0 (reserve)	Mask: 0400h	Bit	
					0 (reserve)	Mask: 0200h	Bit	
					Synchronization Breaker is active	Mask: 0100h	Bit	
					Opening Breaker is active	Mask: 0080h	Bit	
					Closing Breaker is active	Mask: 0040h	Bit	
					0 (reserve)	Mask: 0020h	Bit	
					0 (reserve)	Mask: 0010h	Bit	
					0 (reserve)	Mask: 0008h	Bit	
					Unloading system is active	Mask: 0004h	Bit	

© Woodward Page 231/253

Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units
					0 (reserve)	Mask: 0002h	Bit
					0 (reserve)	Mask: 0001h	Bit
50062	450063	16	signed	4637	Automatic Segment Allocation (ASA)	18	
50063	450064	16	signed	4638	Collective Breaker State (CBS)	0255	
50064	450065	16	signed	7706	0 (reserve)		
50065	450066	16	signed	4503	0 (reserve)		
50066	450067	16	signed	4600	Process Signal Input	000.00100.0	%
50067	450068	16	bit ar- ray	4157	Interface Control Sw	vitch	
			lay		0 (reserve)	Mask: 8000h	Bit
					Source: System update switch	Mask: 4000h	Bit
					Source: Modbus reset switch	Mask: 2000h	Bit
					Source: Droop switch	Mask: 1000h	Bit
					Source: Process switch	Mask: 0800h	Bit
					Source: Lower load switch	Mask: 0400h	Bit
					Source: Raise load switch	Mask: 0200h	Bit
					Source: Ramp pause switch	Mask: 0100h	Bit
					Source: Load/ Unload switch	Mask: 0080h	Bit
					Source: Base load switch	Mask: 0040h	Bit
					Source: Lower voltage switch	Mask: 0020h	Bit
					Source: Raise voltage switch	Mask: 0010h	Bit
					Source: CB Aux contact switch	Mask: 0008h	Bit
					Source: Synchronization GCB run switch	Mask: 0004h	Bit
					Source: Synchronization GCB permissive switch	Mask: 0002h	Bit
					Source: Synchronization GCB check switch	Mask: 0001h	Bit
50068	450069	16	signed	4605	Process reference	000.00100.0	%
50069	450070	16	signed	7708	Power factor reference	(-0.500 1.0000.500)	
50070	450071	16			0 (reserve)		
					Relay Outputs		
50071	450072	16	bit ar-	4626	Relay Outputs 1		
			ray		0 (reserve)	Mask: 8000h	Bit
					0 (reserve)	Mask: 4000h	Bit
					0 (reserve)	Mask: 2000h	Bit
					0 (reserve)	Mask: 1000h	Bit
					Load switch 2 (R12)	Mask: 0800h	Bit
					Load switch 1 (R11)	Mask: 0400h	Bit

Madhua	lodbus Modicon Size For- Para- Description MSLC-2XT Multiplier Units						
Address	Address	[bits	mat	meter ID	Description MSLC-2X1	(BUS-data * Multiplier = real value)	Units
					Alarm 3 (R10)	Mask: 0200h	Bit
					Alarm 2 (R9)	Mask: 0100h	Bit
					Alarm 1 (R8)	Mask: 0080h	Bit
					LCL/Gen breaker open (R7)	Mask: 0040h	Bit
					Breaker Close Relay (R6)	Mask: 0020h	Bit
					Breaker Open Relay (R5)	Mask: 0010h	Bit
					Low Limit Relay (R4)	Mask: 0008h	Bit
					High Limit Relay (R3)	Mask: 0004h	Bit
					0 (reserve) (R2)	Mask: 0002h	Bit
					Alarm Relay (R1)	Mask: 0001h	Bit
50072	450073	16			0 (reserve)		
50073	450074	16			0 (reserve)		
50074	450075	16			0 (reserve)		
					Alarm Management		
50075	450076	16	bit ar- ray	4623	Alarms 1		
			lay		Alarm 16 Reserve	Mask: 8000h	Bit
					Deadbus closure mismatch	Mask: 4000h	Bit
					GCB Open Failure	Mask: 2000h	Bit
					Centralized Alarms	Mask: 1000h	Bit
					Missing member	Mask: 0800h	Bit
					0 (reserve)	Mask: 0400h	Bit
					Communication Error NW A	Mask: 0200h	Bit
					Voltage Range Limit	Mask: 0100h	Bit
					High Voltage Limit	Mask: 0080h	Bit
					Low Voltage Limit	Mask: 0040h	Bit
					Low Process Limit	Mask: 0020h	Bit
					High Process Limit	Mask: 0010h	Bit
					Low Load Limit	Mask: 0008h	Bit
					High Load Limit	Mask: 0004h	Bit
					Breaker Close Failure	Mask: 0002h	Bit
					Synchronizer Timeout	Mask: 0001h	Bit
50076	450077	16			0 (reserve)		
50077	450078	16			0 (reserve)		
50078	450079	16			0 (reserve)		
50079	450080	16			0 (reserve)		

© Woodward Page 233/253

Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units
50080	450081	16			0 (reserve)		
					Discrete Inputs		
50081	450082	16	bit ar-	4624	Discrete Inputs	1	
			ray		0 (reserve)	Mask: 8000h	Bit
					0 (reserve)	Mask: 4000h	Bit
					0 (reserve)	Mask: 2000h	Bit
					0 (reserve)	Mask: 1000h	Bit
					Process Control Switch (DI12)	Mask: 0800h	Bit
					Load Lower Switch (DI11)	Mask: 0400h	Bit
					Load Raise Switch (DI10)	Mask: 0200h	Bit
					Ramp Pause Switch (DI9)	Mask: 0100h	Bit
					Load/Unload Switch (DI8) (Energized=Load)	Mask: 0080h	Bit
					Base Load Control Switch (DI7)	Mask: 0040h	Bit
					Voltage Lower Switch (DI6)	Mask: 0020h	Bit
					Voltage Raise Switch (DI5)	Mask: 0010h	Bit
					Circuit Breaker Aux. is closed (DI4)	Mask: 0008h	Bit
					Synchronization Run switch is active (DI3)	Mask: 0004h	Bit
					Synchronization Permissive switch is active (DI2)	Mask: 0002h	Bit
					Synchronization Check switch is active (DI1)	Mask: 0001h	Bit
50082	450083	16	bit ar-	4625	Digital Inputs 2		
			ray		0 (reserve)	Mask: 8000h	Bit
					0 (reserve)	Mask: 4000h	Bit
					0 (reserve)	Mask: 2000h	Bit
					0 (reserve)	Mask: 1000h	Bit
					0 (reserve)	Mask: 0800h	Bit
					System update (DI23)	Mask: 0400h	Bit
					Modbus reset (DI22)	Mask: 0200h	Bit
					Import/Export Control Switch (DI21)	Mask: 0100h	Bit
					Segment connection 81 is closed (DI20)	Mask: 0080h	Bit
					Segment connection 78 is closed (DI19)	Mask: 0040h	Bit
					Segment connection 67 is closed (DI18)	Mask: 0020h	Bit
					Segment connection 56 is closed (DI17)	Mask: 0010h	Bit
					Segment connection 45 is closed (DI16)	Mask: 0008h	Bit
					Segment connection 34 is closed (DI15)	Mask: 0004h	Bit
					Segment connection 23 is closed (DI14)	Mask: 0002h	Bit

Page 234/253 © Woodward

Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units
					Segment connection 12 is closed (DI13)	Mask: 0001h	Bit
50083	450084	16	bit ar-	4601	Alarms 5		
			ray		0 (reserve)	Mask: 8000h	Bit
					0 (reserve)	Mask: 4000h	Bit
					0 (reserve)	Mask: 2000h	Bit
					0 (reserve)	Mask: 1000h	Bit
					0 (reserve)	Mask: 0800h	Bit
					0 (reserve)	Mask: 0400h	Bit
					0 (reserve)	Mask: 0200h	Bit
					0 (reserve)	Mask: 0100h	Bit
					Aux. System B: AC wiring	Mask: 0080h	Bit
					System A: AC wiring	Mask: 0040h	Bit
					Devices not matched	Mask: 0020h	Bit
					Network B Error	Mask: 0010h	Bit
					Network A Error	Mask: 0008h	Bit
					Communication Error NW B	Mask: 0004h	Bit
					Phase rotation mismatch	Mask: 0002h	Bit
					Busbar mismatch	Mask: 0001h	Bit
50084	450085	16			0 (reserve)		
50085	450086	16			0 (reserve)		
50086	450087	16			0 (reserve)		
50087	450088	16			0 (reserve)		
50088	450089	16			0 (reserve)		
50089	450090	16			0 (reserve)		
50090	450091	16			0 (reserve)		
50091	450092	16			0 (reserve)		
50092	450093	16			0 (reserve)		
50093	450094	16			0 (reserve)		
50094	450095	16			0 (reserve)		
50095	450096	16			0 (reserve)		
50096	450097	16			0 (reserve)		
50097	450098	16			0 (reserve)		
50098	450099	16			0 (reserve)		
50099	450100	16			0 (reserve)		_
					AC Measurement values (32 bit size)		

© Woodward Page 235/253

MSLC-2XT - Master Synchronizer and Load Control

Moco-2X1 - Master Gynchronizer and coad Control							
Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units
50100	450101	32	signed	135	Total System A power	1	W
50102	450103	32	signed	136	Total System A reactive power	1	var
50104	450105	32	signed	137	Total System A apparent power	1	VA
50106	450107	32	signed	170	Average System A Wye-Voltage	0.1	V
50108	450109	32	signed	171	Average System A Delta-Voltage	0.1	٧
50110	450111	32	signed	216	Average System B Delta-Voltage	0.1	V
50112	450113	32	signed	185	Average System A Current	0.001	Α
50114	450115	32	signed	111	System A current 1	0.001	Α
50116	450117	32	signed	112	System A current 2	0.001	Α
50118	450119	32	signed	113	System A current 3	0.001	Α
50120	450121	32	signed	108	System A voltage L1-L2	0.1	V
50122	450123	32	signed	109	System A voltage L2-L3 0.1		V
50124	450125	32	signed	110	System A voltage L3-L1	0.1	V
50126	450127	32	signed	114	System A voltage L1-N	0.1	V
50128	450129	32	signed	115	System A voltage L2-N	0.1	V
50130	450131	32	signed	116	System A voltage L3-N	0.1	V
50132	450133	32	signed	125	System A active power 1-N	1	W
50134	450135	32	signed	126	System A active power 2-N	1	W
50136	450137	32	signed	127	System A active power 3-N	1	W
50138	450139	32	signed	182	System B voltage (L1-N) L1-L2	0.1	V
50140	450141	32	signed	173	Average Aux.System B Wye-Voltage	0.1	V
50142	450143	32	signed	174	Average Aux.System B Delta-Voltage	0.1	V
50144	450145	32	signed	118	Aux.System B voltage L1-L2	0.1	V
50146	450147	32	signed	119	Aux.System B voltage L2-L3	0.1	V
50148	450149	32	signed	120	Aux.System B voltage L3-L1	0.1	V
50150	450151	32	signed	121	Aux.System B voltage L1-N	0.1	V
50152	450153	32	signed	122	Aux.System B voltage L2-N	0.1	V
50154	450155	32	signed	123	Aux.System B voltage L3-N	0.1	V
50156	450157	32	signed	7719	P Sum	0.001	kW
50158	450159	32	signed	7720	Q Sum	0.001	kvar
50160	450161	32	signed	7721	Import/Export reference	0.1	kW
50162	450163	32	signed	7722	Reactive load reference	0.1	kvar
50164	450165	32	signed	7726	Process reference input	0.1	
50166	450167	32	signed	7727	Process signal input	0.1	
50168	450169	32	signed	7737	Process reference toolkit	0.1	
50170	450171	32	signed	7738	Remote load reference input	0.1	kW

Page 236/253 © Woodward

Manual 37947

MSLC-2XT - Master Synchronizer and Load Control

Modbus Address	Modicon Address	Size [bits]	For- mat	Para- meter ID	Description MSLC-2XT	Multiplier (BUS-data * Multiplier = real value)	Units
50172	450173	32			0 (reserve)		
50174	450175	32	signed	2520	Syst.A.pos.act.energy	0.01	MWh
50176	450177	32	signed	2524	Syst.A.neg.act.energy	0.01	MWh
50178	450179	32	signed	2522	Syst.A.pos.react.energy	0.01	Mvar h
50180	450181	32	signed	2526	Syst.A.neg.react.energy	0.01	Mvar h
50182	450183	32	signed	2568	0 (reserve)	0.01	h

Table 0-1: Data Protocol 5200

© Woodward Page 237/253

Appendix D Parameter Overview

Introduction

Parameter List Columns

The parameter list consists of the following columns, which provide important information for each parameter:

NamespaceX

The namespaces 1 and 2 are used to combine all parameters within functional groups.

ID

The parameter ID is a unique identifier for each individual parameter. It is mentioned besides each parameter in ToolKit and also required when configuring the unit via interface.

Parameter Text

The parameter text describes the parameter and appears on the configuration screens of the unit and ToolKit.

Setting Range

The setting range describes the range for possible parameter settings and may either be a range (e.g. 0 to 9), or a selection of different options (e.g. Yes or No). If the respective parameter allows configuring different options, the number behind each option is the number, which needs to be transmitted via interface to select this option.

Default Value

The default value is the parameter setting at delivery of the unit or after resetting the unit to factory settings. If the parameter allows configuring different options, the default value describes the number of the respective option.

Data Type

The data type indicates the data type of the respective parameter. The following data types are possible:

UNSIGNED8 unsigned 8 bit integer
 UNSIGNED16 unsigned 16 bit integer
 UNSIGNED32 unsigned 32 bit integer
 SIGNED32 signed 32 bit integer
 INTEGER16 16 bit integer

Code Level (CL)

This is the minimum code level, which is required to access the respective parameter.

Page 238/253 © Woodward

Parameter List

(Sequence following ID number)

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
521	-	Lamp test	No ; 0 Yes ; 1		UNSIGNED 16	0
1701	MENU 5.2	Reset factory default values	No ; 0 Yes ; 1	0	UNSIGNED 16	0
1750	MENU 5	System rated frequency	50Hz ; 0 60Hz ; 1	1	UNSIGNED 16	2
1770	MENU 4	System A voltage monitoring	Phase - phase ; 0 Phase - neutral ; 1	0	UNSIGNED 16	2
1850	MENU 5	System A current input	L1 L2 L3 ; 0 Phase L1 ; 1 Phase L2 ; 2 Phase L3 ; 3	0	UNSIGNED 16	2
1851	MENU 5	System A voltage measuring	3Ph 4W ; 0 3Ph 3W ; 1 1Ph 2W ; 2 n/a1 ; 3 3Ph 4W OD ; 4	1	UNSIGNED 16	2
1853	MENU 5	Aux system B voltage meas.	3Ph 4W ; 0 3Ph 3W ; 1	1	UNSIGNED 16	2
1858	MENU 5	1Ph2W voltage input	Phase - neutral ; 0 Phase - phase ; 1	1	UNSIGNED 16	2
1859	MENU 5	1Ph2W phase rotation	CW;0 CCW;1	0	UNSIGNED 16	2
2510	MENU 5.3	Syst. A active energy [0.00MWh]	No ; 0 Yes ; 1	0	UNSIGNED 16	2
2511	MENU 5.3	Syst. A react. energy [0.00Mvarh]	No ; 0 Yes ; 1	0	UNSIGNED 16	2
2512	MENU 5.3	Syst. A active energy -[0.00MWh]	No ; 0 Yes ; 1	0	UNSIGNED 16	2
2513	MENU 5.3	Syst. A react. energy -[0.00Mvarh]	No ; 0 Yes ; 1	0	UNSIGNED 16	2
3170	MENU 5.1	Baudrate	2400 Bd; 0 4800 Bd; 1 9600 Bd; 2 19.2 kBd; 3 38.4 kBd; 4 56 kBd; 5 115 kBd; 6	2	UNSIGNED 16	2
3171	MENU 5.1	Parity	No ; 0 Even ; 1 Odd ; 2	0	UNSIGNED 16	2
3172	MENU 5.1	Stop bits	One ; 0 Two ; 1	0	UNSIGNED 16	2

© Woodward Page 239/253

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
3173	MENU 5.1	Full-, halfduplex mode	Halfduplex ; 0 Fullduplex ; 1	1	UNSIGNED 16	2
5730	MENU 1	Synchronization CB	Slip frequency ; 0 Phase matching ; 1	0	UNSIGNED 16	2
7500	MENU 3	Process high limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7501	MENU 3	Process low limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7502	MENU 3	Process switches	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7504	MENU 2	High load limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7505	MENU 2	Low load limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7506	MENU 2	Load limit switch	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7509	MENU 4	Voltage low alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7510	MENU 4	Voltage high alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7511	MENU 4	Voltage switches	Disabled ; 0 Enabled ; 1	1	UNSIGNED 16	2
7512	MENU 4	Voltage range alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7513	MENU 1	Voltage matching	Disabled ; 0 Enabled ; 1	1	UNSIGNED 16	2
7514	MENU 1	Auto re-synchronization	Disabled ; 0 Enabled ; 1	1	UNSIGNED 16	2
7555	MENU 1	Dead bus closure	Disabled ; 0 Enabled ; 1	1	UNSIGNED 16	2
7556	MENU 1	Reclose limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7557	MENU 1	Synchronizer timeout alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7558	MENU 4	VAR PF control mode	PF Control ; 0 VAR Control ; 1 Constant Generator PF ; 2	1	UNSIGNED 16	2
7559	MENU 3	Process control action	Direct ; 0 Indirect ; 1	1	UNSIGNED 16	2
7584	MENU 0	Synchronizer timeout alarm	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2
7585	MENU 0	Reclose limit alarm	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2

Page 240/253 © Woodward

ID	Menu	Parameter Text	Setting range	Default	Data Type	CL
7586	MENU 0	High load limit alarm	Off; 0 Alarm1; 1 Alarm2; 2	value 0	UNSIGNED 16	2
7587	MENU 0	Low load limit alarm	Alarm3; 3 Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7588	MENU 0	High process limit alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7589	MENU 0	Low process limit alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7590	MENU 0	Low voltage limit alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7591	MENU 0	High voltage limit alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7592	MENU 0	Voltage range limit alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7593	MENU 0	Communication error alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7595	MENU 0	Missing member alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7596	MENU 0	Centralized alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7597	MENU 0	CB open fail	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7598	MENU 0	Deadbus closure mismatch	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2
7616	MENU 2	Gen load high limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7617	MENU 2	Gen load low limit alarm	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2

© Woodward Page 241/253

MSLC-2XT - Master Synchronizer and Load Control

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
7618	MENU 2	Gen load limit switch	Disabled ; 0 Enabled ; 1	0	UNSIGNED 16	2
7625	MENU 5	Switch dead bus A -> dead bus B	No ; 0 Yes ; 1	1	UNSIGNED 16	2
7626	MENU 5	Switch alive bus A -> dead bus B	No ; 0 Yes ; 1	1	UNSIGNED 16	2
7627	MENU 5	Switch alive bus B -> dead bus A	No ; 0 Yes ; 1	1	UNSIGNED 16	2
7628	MENU 5	Type of MSLC breaker	Tie ; 0 Utility ; 1	1	UNSIGNED 16	2
7634	MENU 2	Load control setpoint source	Internal ; 0 Interface ; 1	0	UNSIGNED 16	2
7635	MENU 4	VAR control setpoint source	Internal ; 0 Interface ; 1	0	UNSIGNED 16	2
7649	MENU 5	Auxiliary system B available	No ; 0 Yes ; 1	0	UNSIGNED 16	2
7673	MENU 6	HW signal	0 - 20mA; 0 4 - 20mA; 1 0 - 10V; 2 0 - 5V; 3 1 - 5V; 4	3	UNSIGNED 16	2
7674	MENU 6	HW signal	0 - 20mA; 0 4 - 20mA; 1 0 - 10V; 2 0 - 5V; 3 1 - 5V; 4	4	UNSIGNED 16	2
7675	MENU 6	HW signal	0 - 20mA; 0 4 - 20mA; 1 0 - 10V; 2 0 - 5V; 3 1 - 5V; 4	3	UNSIGNED 16	2
7732	MENU 6	Process engineering unit	kW;0 °C;1 kPa;2 bar;3 V;4 mA;5	0	UNSIGNED 16	2
7755	MENU 2	Interface switch Import Export	Export ; 0 Import ; 1	0	UNSIGNED 16	2
7771	MENU 0	System B mismatch alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7779	MENU 0	Phase rotation mismatch alarm	Off; 0 Alarm1; 1 Alarm2; 2 Alarm3; 3	0	UNSIGNED 16	2
7783	MENU 1	Freq. control setpoint source	Internal ; 0 Interface ; 1	0	UNSIGNED 16	2

Page 242/253 © Woodward

	Mailadi 07347 MOEO-EATI - Master Oynem Onizer and Eoda Control					
ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
7784	MENU 4	Volt. control setpoint source	Internal ; 0 Interface ; 1	0	UNSIGNED 16	2
7786	MENU 5	Basic segment number source	Internal ; 0 Interface ; 1	0	UNSIGNED 16	2
7789	MENU 5	System update	Off; 0 On; 1	0	UNSIGNED 16	2
7809	MENU 5	Ethernet communication mode	Single ; 0 Redundant ; 1	0	UNSIGNED 16	2
7824	MENU 0	Communication error NW B alarm	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2
7825	MENU 0	Network A system error	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2
7826	MENU 0	Network B system error	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2
7827	MENU 0	Devices not matched	Off ; 0 Alarm1 ; 1 Alarm2 ; 2 Alarm3 ; 3	0	UNSIGNED 16	2
8841	MENU 1	Phase angle compensation MCB	Off; 0 On; 1	0	UNSIGNED 16	2
10417	MENU 5.2	Factory default settings	No ; 0 Yes ; 1	0	UNSIGNED 16	0
1702	MENU 5	Device number	033 to 048	33	UNSIGNED 16	2
1752	MENU 2	System A rated load	000000.1 to 999999.9 kW	000250.0 kW	UNSIGNED 32	2
1754	MENU	System A rated current	00001 to 32000 A	00500 A	UNSIGNED 16	2
1758	MENU 4	System A rated react. power	000000.1 to 999999.9 kvar	000190.0 kvar	UNSIGNED 32	2
1766	MENU 5	System A rated voltage	000050 to 650000 V	000480 V	UNSIGNED 32	2
1781	MENU 5	System B rated voltage	000050 to 650000 V	000480 V	UNSIGNED 32	2
1800	MENU 5	System A PT secondary rated voltage	050 to 480 V	120 V	UNSIGNED 16	2
1801	MENU 5	System A PT primary rated voltage	000050 to 650000 V	000480 V	UNSIGNED 32	2
1803	MENU 5	System B PT secondary rated voltage	050 to 480 V	120 V	UNSIGNED 16	2
1804	MENU 5	System B PT primary rated voltage	000050 to 650000 V	000480 V	UNSIGNED 32	2

© Woodward Page 243/253

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
1806	MENU 5	System A CT primary rated current	00001 to 32000 A/x	00500 A/x	UNSIGNED 16	2
2515	MENU 5.3	Counter value preset	00000000 to 99999999	0	UNSIGNED 32	2
3063	MENU 1	Synchronizer timeout	003 to 999 s	060 s	UNSIGNED 16	2
3123	MENU 2	Utility unload trip time	003 to 999 s	060 s	UNSIGNED 16	2
3125	MENU 2	Generator unload trip	00.5 to 99.9 %	03.0 %	UNSIGNED 16	2
3181	MENU 5.1	Power [W] exponent 10^x	02 to 05	3	INTEGER 16	2
3182	MENU 5.1	Voltage [V] exponent 10^x	-01 to 02	0	INTEGER 16	2
3183	MENU 5.1	Current [A] exponent 10^x	-01 to 00	0	INTEGER 16	2
3185	MENU 5.1	Modbus slave ID	000 to 255	33	UNSIGNED 16	2
3186	MENU 5.1	Reply delay time	0.00 to 1.00 s	0.00 s	UNSIGNED 16	2
3188	MENU 5.1	Modbus slave ID	000 to 255	33	UNSIGNED 16	2
3189	MENU 5.1	Reply delay time	0.00 to 2.55 s	0.00 s	UNSIGNED 16	2
3417	MENU 1	CB close hold time	0.10 to 1.00 s	0.50 s	UNSIGNED 16	2
3419	MENU 1	CB maximum closing attempts	01 to 10	5	UNSIGNED 16	2
3421	MENU 1	CB open monitoring	0.10 to 5.00 s	2.00 s	UNSIGNED 16	2
4311	MENU 6	User defined min display value	-100.0 to 100.0 %	000.0 %	INTEGER 16	2
4312	MENU 6	User defined max display value	-100.0 to 100.0 %	100.0 %	INTEGER 16	2
4322	MENU 6	User defined min display value	-100.0 to 100.0 %	000.0 %	INTEGER 16	2
4323	MENU 6	User defined max display value	000.0 to 100.0 %	100.0 %	INTEGER 16	2
4333	MENU 6	User defined min display value	-00.999 to 00.999 PF	-00.990 PF	INTEGER 16	2
4334	MENU 6	User defined max display value	-00.999 to 00.999 PF	00.710 PF	INTEGER 16	2
4500	MENU 3	Process control proportional gain	000.01 to 100.00	003.00	INTEGER 16	2
4501	MENU 3	Process control integral gain	000.01 to 100.00 s	003.00 s	INTEGER 16	2
4502	MENU 3	Process control derivative ratio	000.01 to 100.00 s	000.01 s	INTEGER 16	2
4504	MENU 3	Raise reference rate	00.01 to 20.00 %/s	00.10 %/s	INTEGER 16	2
4505	MENU 3	Lower reference rate	00.01 to 20.00 %/s	00.10 %/s	INTEGER 16	2
4506	MENU 2	Utility unload trip	00000 to 30000 kW	00005 kW	INTEGER 16	2

				•		
ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
4508	MENU 3	Process droop	000.0 to 100.0 %	000.0 %	INTEGER 16	2
4509	MENU 3	Process filter	0 to 8	0	INTEGER 16	2
4510	MENU 3	Process high limit PU	000.0 to 150.0 %	075.0 %	INTEGER 16	2
4511	MENU 3	Process high limit DO	000.0 to 150.0 %	075.0 %	INTEGER 16	2
4513	MENU 3	Process low limit PU	000.0 to 150.0 %	050.0 %	INTEGER 16	2
4514	MENU 3	Process low limit DO	000.0 to 150.0 %	050.0 %	INTEGER 16	2
4515	MENU 2	Raise load rate	000.01 to 100.00 %/s	001.00 %/s	INTEGER 16	2
4516	MENU 2	Lower load rate	000.01 to 100.00 %/s	001.00 %/s	INTEGER 16	2
4523	MENU 2	Import /export droop	000.0 to 100.0 %	000.0 %	INTEGER 16	2
4524	MENU 3	Unload ramp rate	000.01 to 100.00 %/s	003.00 %/s	INTEGER 16	2
4526	MENU 2	High load limit DO	-150 to 150 %	90%	INTEGER 16	2
4528	MENU 2	Low load limit DO	002 to 100 %	5%	INTEGER 16	2
4529	MENU 2	Gen load switch 1 PU	000 to 100 %	0%	INTEGER 16	2
4530	MENU 2	Gen load switch 1 DO	000 to 100 %	10%	INTEGER 16	2
4534	MENU 1	Reclose delay	0001 to 1000 s	0002 s	INTEGER 16	2
4536	MENU 4	Voltage low limit	000 to 150 %	90%	INTEGER 16	2
4537	MENU 4	Voltage high limit	000 to 150 %	110%	INTEGER 16	2
4538	MENU 2	Gen load switch 2 PU	000 to 100 %	100%	INTEGER 16	2
4539	MENU 1	Frequency synchronizer proportional gain	000.01 to 100.00	000.80	INTEGER 16	2
4540	MENU 1	Frequency synchronizer integral gain	000.00 to 020.00	000.50	INTEGER 16	2
4541	MENU 1	Voltage window	00.50 to 10.00 %	00.50 %	INTEGER 16	2
4543	MENU 2	Gen load switch 2 DO	000 to 100 %	90%	INTEGER 16	2
4544	MENU 5	Basic segment number	00001 to 00008	1	INTEGER 16	2
4700	MENU 2	Load ramp rate	000.01 to 100.00 %/s	003.00 %/s	INTEGER 16	2
4709	MENU 2	High load limit PU	-150 to 150 %	100%	INTEGER 16	2
4710	MENU 2	Low load limit PU	000 to 100 %	0%	INTEGER 16	2
4712	MENU 1	Slip frequency setpoint offset	-00.50 to 00.50 Hz	00.10 Hz	INTEGER 16	2
4713	MENU 1	DI raise frequency ramp	000.01 to 001.00 %rated/s	000.04 %rated/s	INTEGER 16	2
4714	MENU 1	DI lower frequency ramp	000.01 to 001.00 %rated/s	000.04 %rated/s	INTEGER 16	2

© Woodward Page 245/253

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
4715	MENU 4	DI raise voltage ramp	000.01 to 001.00 %rated/s	000.05 %rated/s	INTEGER 16	2
4716	MENU 4	DI lower voltage ramp	000.01 to 001.00 %rated/s	000.05 %rated/s	INTEGER 16	2
4717	MENU 1	Phase window ring structure	000.0 to 060.0 °	010.0 °	INTEGER 16	2
4718	MENU 1	Voltage window ring structure	00.50 to 20.00 %	10.00 %	INTEGER 16	2
5430	MENU 5.1	TCP/IP address 0	000 to 255		UNSIGNED 16	2
5431	MENU 5.1	TCP/IP address 1	000 to 255		UNSIGNED 16	2
5432	MENU 5.1	TCP/IP address 2	000 to 255		UNSIGNED 16	2
5433	MENU 5.1	TCP/IP address 3	000 to 255		UNSIGNED 16	2
5503	MENU 1	Frequency control setpoint ramp	00.10 to 60.00 Hz/s	02.50 Hz/s	UNSIGNED 16	2
5505	MENU 1	Phase matching gain	01 to 99	5	UNSIGNED 16	2
5506	MENU 1	Phase matching df-start	0.02 to 0.25 Hz	0.05 Hz	UNSIGNED 16	2
5510	MENU 2	Import/export control proportional gain	000.01 to 100.00	001.00	UNSIGNED 16	2
5511	MENU 2	Import/export control integral gain	000.01 to 100.00	000.50	UNSIGNED 16	2
5512	MENU 2	Import/export control derivative ratio	000.01 to 100.00	000.01	UNSIGNED 16	2
5516	MENU 1	Start frequency control level	00.00 to 70.00 Hz	55.00 Hz	UNSIGNED 16	1
5517	MENU 1	Start frequency control delay	000 to 999 s	001 s	UNSIGNED 16	1
5600	MENU 4	Voltage control setpoint	000050 to 650000 V	000480 V	UNSIGNED 32	1
5603	MENU 4	Voltage control setpoint ramp	001.00 to 300.00 %/s	005.00 %/s	UNSIGNED 16	2
5610	MENU 1	Voltage synchronizer proportional gain	000.01 to 100.00	001.00	UNSIGNED 16	2
5611	MENU 1	Voltage synchronizer integral gain	000.01 to 100.00	000.50	UNSIGNED 16	2
5613	MENU 4	VAR control proportional gain	000.01 to 100.00	001.00	UNSIGNED 16	2
5614	MENU 4	VAR control integral gain	000.01 to 100.00	000.50	UNSIGNED 16	2
5615	MENU 4	VAR control derivative ratio	000.01 to 100.00	000.01	UNSIGNED 16	2
5620	MENU 4	Power factor reference	-00.999 to 01.000	1,000	INTEGER 16	0

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
5621	MENU 4	Constant gen. PF reference	-00.999 to 01.000	00.950	INTEGER 16	0
5622	MENU 4	Reactive power setpoint ramp	000.01 to 100.00 %/s	010.00 %/s	UNSIGNED 16	2
5701	MENU 1	Positive frequency differential CB	00.02 to 00.49 Hz	00.18 Hz	INTEGER 16	2
5702	MENU 1	Negative frequency differential CB	-00.49 to 00.00 Hz	-00.10 Hz	INTEGER 16	2
5703	MENU 1	Max. positive phase window CB	000.0 to 060.0 °	005.0°	INTEGER 16	2
5704	MENU 1	Max. negative phase window CB	-060.0 to 000.0 °	-005.0 °	INTEGER 16	2
5705	MENU 1	Breaker delay	0040 to 1000 ms	0080 ms	UNSIGNED 16	2
5707	MENU 1	Phase matching CB dwell time	00.0 to 60.0 s	00.5 s	UNSIGNED 16	2
5800	MENU 5	Upper voltage limit	100 to 150 %	110%	UNSIGNED 16	2
5801	MENU 5	Lower voltage limit	050 to 100 %	90%	UNSIGNED 16	2
5802	MENU 5	Upper frequency limit	100.0 to 150.0 %	110.0 %	UNSIGNED 16	2
5803	MENU 5	Lower frequency limit	050.0 to 100.0 %	090.0 %	UNSIGNED 16	2
5820	MENU 1	Dead bus detection max. volt.	000 to 030 %	10%	UNSIGNED 16	2
7717	MENU 2	Import / export level	-999999.9 to 999999.9 kW	000020.0 kW	SIGNED 32	0
7723	MENU 4	KVAR reference	-999999.9 to 999999.9 kvar	000010.0 kvar	SIGNED 32	0
7733	MENU 6	Process min value	-999999.9 to 999999.9	-000500.0	SIGNED 32	2
7734	MENU 6	Process max value	-999999.9 to 999999.9	000500.0	SIGNED 32	2
7735	MENU 6	Remote load ref min value	-999999.9 to 999999.9 kW	000000.0 kW	SIGNED 32	2
7736	MENU 6	Remote load ref max value	-999999.9 to 999999.9 kW	000500.0 kW	SIGNED 32	2
7737	MENU 3	Process reference	-999999.9 to 999999.9	0.00000	SIGNED 32	0
8842	MENU 1	Phase angle MCB	-0180 to 0180 °	0000°	INTEGER 16	2
10411	MENU 5.2	Supercommissioning level code	0001 to 9999		UNSIGNED 16	5
10412	MENU 5.2	Temp. supercomm. level code	0001 to 9999		UNSIGNED 16	5
10413	MENU 5.2	Commissioning code level	0001 to 9999		UNSIGNED 16	3
10414	MENU 5.2	Temp. commissioning code level	0001 to 9999		UNSIGNED 16	3

© Woodward Page 247/253

MSLC-2XT - Master Synchronizer and Load Control

ID	Menu	Parameter Text	Setting range	Default value	Data Type	CL
10415	MENU 5.2	Basic code level	0001 to 9999		UNSIGNED 16	1
10430	-	Password for serial interface2 (RS 485)	0000 to 9999	1805	UNSIGNED 16	0
10434	-	Password 1 for Modbus TCP	0000 to 9999	1805	UNSIGNED 16	0
10435	-	Password 2 for Modbus TCP	0000 to 9999	1805	UNSIGNED 16	0
Note:		10434 and 10435 can be used equally. They exist in order that the DSLC-2XT is backward compatible with the DSLC-2.				

Table 0-1: Parameter list

Page 248/253 © Woodward

Appendix E Service Options

Product Service Options

The following factory options are available for servicing Woodward equipment, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is purchased from Woodward or the service is performed. If you are experiencing problems with installation or unsatisfactory performance of an installed system, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter)
 and discuss your problem. In most cases, your problem can be resolved over the phone. If not,
 you can select which course of action you wish to pursue based on the available services
 listed in this section.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned to Woodward for repair, please contact Woodward in advance to obtain a Return Authorization Number. When shipping the unit(s), attach a tag with the following information:

- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part numbers (P/N) and serial number (S/N);
- description of the problem;
- instructions describing the desired type of repair.

CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards and Modules.*

© Woodward Page 249/253

Packing a Control

Use the following materials when returning a complete control:

- · protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- · packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls:
- a strong tape around the outside of the carton for increased strength.

Return Authorization Number RAN

Please call by phone our Customer Service Department in Stuttgart [+49 (0) 711 789 54-510]. They will help expedite the processing of your order through our distributors or local service facility. To expedite the repair process, contact Woodward in advance to obtain a Return Authorization Number and arrange for issue of a purchase order for the unit(s) to be repaired. No work can be started until a purchase order is received.

NOTE

We highly recommend that you make arrangement in advance for return shipments. Contact a Woodward customer service representative at +49 (0) 711 789 54-0 for instructions and for a Return Authorization Number.

Replacement Parts

When ordering replacement parts for controls, include the following information:

- the part numbers P/N (XXXX-XXX) that is on the enclosure nameplate:
- the unit serial number S/N, which is also on the nameplate.

Page 250/253 © Woodward

How to Contact Woodward

Please contact following address if you have guestions or if you want to send a product for repair:

Woodward GmbH Handwerkstrasse 29 70565 Stuttgart - Germany

Phone: +49 (0) 711 789 54-510 (8.00 - 16.30 German time)

Fax: +49 (0) 711 789 54-101 e-mail: stgt-info@woodward.com

For assistance outside Germany please contact the Woodward Customer Service Department or consult our worldwide directory on Woodward's website (**www.woodward.com**) for the name of your nearest Woodward distributor or service facility.

Engineering Services

Woodward Industrial Controls Engineering Services offers the following after-sales support for Woodward products. For these services, you can contact us by telephone, by e-mail, or through the Woodward website.

- Technical support
- Product training
- Field service during commissioning

Technical Support is available through our many worldwide locations or through our authorized distributors depending on the product. This service can assist you with technical questions or problem solving during normal business hours. Emergency assistance is also available during non-business hours by phoning our toll-free number and stating the urgency of your problem. For technical engineering support, please contact us via our local phone numbers, e-mail us, or use our website and reference technical support.

Product Training is available on-site from several of our worldwide facilities. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability. For information concerning training, please contact us via our local phone numbers, e-mail us, or use our website and reference *customer training*.

Field Service engineering on-site support is available, depending on the product and location, from our facility in Colorado, or from one of many worldwide Woodward offices or authorized distributors. Field engineers are experienced on both Woodward products as well as on much of the non-Woodward equipment with which our products interface. For field service engineering assistance, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference **field service**.

© Woodward Page 251/253

Technical Assistance

If you need to telephone for technical assistance, you will need to provide the following information. Please write it down here before phoning:

Contact			
Your company			
Your name			
Phone number			
Control (see name pl	ate)	REV:	
Unit type			
Serial number	S/N		
Description of your p	roblem		

Please be sure you have a list of all parameters available. You can print this using ToolKit. Additionally you can save the complete set of parameters (standard values) and send them to our Service department via e-mail.

Page 252/253 © Woodward

Released

We appreciate your comments about the content of our publications.

Please send comments to: marketing-pg@woodward.com

Please include the manual number from the front cover of this publication.

Woodward GmbH

Handwerkstrasse 29 - 70565 Stuttgart - Germany Phone +49 (0) 711 789 54-510 • Fax +49 (0) 711 789 54-101 marketing_pg@woodward.com

Homepage

http://www.woodward.com

Woodward has company-owned plants, subsidiaries and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address/phone/fax/e-mail information for all locations is available on our website (www.woodward.com).

2024/02/Stuttgart